scholarly journals Passive control of magneto-nanomaterials transient flow subject to non-linear thermal radiation

2021 ◽  
pp. 169-169
Author(s):  
Ikram Ullah ◽  
Sayed Shah ◽  
Gul Zaman ◽  
Taseer Muhammad ◽  
Zakir Hussain

Present investigation is concerned with mixed convection flow of Williamson nanoliquid over an unsteady slandering stretching sheet. Aspects of non-linear thermal radiation, Brownian diffusion and thermophoresis effects are addressed. Non-linear stretching surface of varying thickness induce the flow. Novel features of combined zero mass flux and convective conditions are accounted. Use of appropriate transformations results into the non-linear ODEs. Computations for the convergent solutions are provided. Graphs are designed for interpretations to quantities. Nusselt number and surface drag are computationally inspected. Our computed results indicate that attributes of nanoparticles and non-linear thermal radiation enhance the temperature distribution.

2018 ◽  
Vol 7 (4.10) ◽  
pp. 417
Author(s):  
K. Jagan ◽  
S. Sivasankaran ◽  
M. Bhuvaneswari ◽  
S. Rajan

The objective of this paper is to analyze the effect of thermal radiation on MHD mixed convection flow of a micropolar nanoliquid   towards a non-linear stretching surface with convective boundary condition. The governing equations are converted into non-linear    ordinary differential equations by using suitable similarity transformations. The homotopy analysis method is used for solving the non-linear ordinary differential equations. The temperature profiles increase due to increase in thermal radiation parameter. The microrotation   profile increases when boundary parameter is increased. Also, the skin friction coefficient and local Nusselt are plotted for various    parameters.  


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Khilap Singh ◽  
Manoj Kumar

A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.


2013 ◽  
Vol 29 (3) ◽  
pp. 559-568 ◽  
Author(s):  
G. C. Shit ◽  
R. Haldar ◽  
A. Sinha

AbstractA non-linear analysis has been made to study the unsteady hydromagnetic boundary layer flow and heat transfer of a micropolar fluid over a stretching sheet embedded in a porous medium. The effects of thermal radiation in the boundary layer flow over a stretching sheet have also been investigated. The system of governing partial differential equations in the boundary layer have reduced to a system of non-linear ordinary differential equations using a suitable similarity transformation. The resulting non-linear coupled ordinary differential equations are solved numerically by using an implicit finite difference scheme. The numerical results concern with the axial velocity, micro-rotation component and temperature profiles as well as local skin-friction coefficient and the rate of heat transfer at the sheet. The study reveals that the unsteady parameter S has an increasing effect on the flow and heat transfer characteristics.


2020 ◽  
Vol 9 (5) ◽  
pp. 11035-11044 ◽  
Author(s):  
Zahra Abdelmalek ◽  
Imad Khan ◽  
M. Waleed Ahmed Khan ◽  
Khalil Ur Rehman ◽  
El-Sayed M. Sherif

PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0149304 ◽  
Author(s):  
M. Mustafa ◽  
A. Mushtaq ◽  
T. Hayat ◽  
A. Alsaedi

Sign in / Sign up

Export Citation Format

Share Document