scholarly journals The generalized Gegenbauer-Humberts wavelet for solving fractional differential equations

2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 107-118
Author(s):  
Jumana Alkhalissi ◽  
Ibrahim Emiroglu ◽  
Aydin Secer ◽  
Mustafa Bayram

In this paper we present a new method of wavelets, based on generalized Gegen?bauer-Humberts polynomials, named generalized Gegenbauer-Humberts wave?lets. The operational matrix of integration are derived. By using the proposed method converted linear and non-linear fractional differential equation a system of algebraic equations. In addition, discussed some examples to explain the efficiency and accuracy of the presented method.

2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 107-118
Author(s):  
Jumana Alkhalissi ◽  
Ibrahim Emiroglu ◽  
Aydin Secer ◽  
Mustafa Bayram

In this paper we present a new method of wavelets, based on generalized Gegen?bauer-Humberts polynomials, named generalized Gegenbauer-Humberts wave?lets. The operational matrix of integration are derived. By using the proposed method converted linear and non-linear fractional differential equation a system of algebraic equations. In addition, discussed some examples to explain the efficiency and accuracy of the presented method.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Rabha W. Ibrahim

We prove the Ulam-Hyers stability of Cauchy fractional differential equations in the unit disk for the linear and non-linear cases. The fractional operators are taken in sense of Srivastava-Owa operators.


2020 ◽  
Vol 24 (4) ◽  
pp. 2535-2542
Author(s):  
Yong-Ju Yang

This paper proposes a new method to solve local fractional differential equation. The method divides the studied equation into a system, where the initial solution is obtained from a residual equation. The new method is therefore named as the fractional residual method. Examples are given to elucidate its efficiency and reliability.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1755
Author(s):  
M. S. Al-Sharif ◽  
A. I. Ahmed ◽  
M. S. Salim

Fractional differential equations have been applied to model physical and engineering processes in many fields of science and engineering. This paper adopts the fractional-order Chelyshkov functions (FCHFs) for solving the fractional differential equations. The operational matrices of fractional integral and product for FCHFs are derived. These matrices, together with the spectral collocation method, are used to reduce the fractional differential equation into a system of algebraic equations. The error estimation of the presented method is also studied. Furthermore, numerical examples and comparison with existing results are given to demonstrate the accuracy and applicability of the presented method.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jingjing Tan ◽  
Meixia Li ◽  
Aixia Pan

We prove that there are unique positive solutions for a new kind of fractional differential equation with a negatively perturbed term boundary value problem. Our methods rely on an iterative algorithm which requires constructing an iterative scheme to approximate the solution. This allows us to calculate the estimation of the convergence rate and the approximation error.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 226-230 ◽  
Author(s):  
A. Bolandtalat ◽  
E. Babolian ◽  
H. Jafari

AbstractIn this paper, we have applied a numerical method based on Boubaker polynomials to obtain approximate numerical solutions of multi-order fractional differential equations. We obtain an operational matrix of fractional integration based on Boubaker polynomials. Using this operational matrix, the given problem is converted into a set of algebraic equations. Illustrative examples are are given to demonstrate the efficiency and simplicity of this technique.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Qingxue Huang ◽  
Fuqiang Zhao ◽  
Jiaquan Xie ◽  
Lifeng Ma ◽  
Jianmei Wang ◽  
...  

In this paper, a robust, effective, and accurate numerical approach is proposed to obtain the numerical solution of fractional differential equations. The principal characteristic of the approach is the new orthogonal functions based on shifted Legendre polynomials to the fractional calculus. Also the fractional differential operational matrix is driven. Then the matrix with the Tau method is utilized to transform this problem into a system of linear algebraic equations. By solving the linear algebraic equations, the numerical solution is obtained. The approach is tested via some examples. It is shown that the FLF yields better results. Finally, error analysis shows that the algorithm is convergent.


Fractals ◽  
2016 ◽  
Vol 24 (02) ◽  
pp. 1650021 ◽  
Author(s):  
KIRAN M. KOLWANKAR

The concept of local fractional derivative was introduced in order to be able to study the local scaling behavior of functions. However it has turned out to be much more useful. It was found that simple equations involving these operators naturally incorporate the fractal sets into the equations. Here, the scope of these equations has been extended further by considering different possibilities for the known function. We have also studied a separable local fractional differential equation along with its method of solution.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Rabha W. Ibrahim

We provide a complex transform that maps the complex fractional differential equation into a system of fractional differential equations. The homogeneous and nonhomogeneous cases for equivalence equations are discussed and also nonequivalence equations are studied. Moreover, the existence and uniqueness of solutions are established and applications are illustrated.


Author(s):  
Nguyen Cong ◽  
Doan Son ◽  
Hoang Tuan

AbstractOur aim in this paper is to investigate the asymptotic behavior of solutions of linear fractional differential equations. First, we show that the classical Lyapunov exponent of an arbitrary nontrivial solution of a bounded linear fractional differential equation is always nonnegative. Next, using the Mittag-Leffler function, we introduce an adequate notion of fractional Lyapunov exponent for an arbitrary function. We show that for a linear fractional differential equation, the fractional Lyapunov spectrum which consists of all possible fractional Lyapunov exponents of its solutions provides a good description of asymptotic behavior of this equation. Consequently, the stability of a linear fractional differential equation can be characterized by its fractional Lyapunov spectrum. Finally, to illustrate the theoretical results we compute explicitly the fractional Lyapunov exponent of an arbitrary solution of a planar time-invariant linear fractional differential equation.


Sign in / Sign up

Export Citation Format

Share Document