scholarly journals Flexible Edge Component Detection Using Image Power Spectrum Sparsity

2019 ◽  
Vol 23 (4) ◽  
pp. 189-192
Author(s):  
Naw Jacklin Nyunt ◽  
Yosuke Sugiura ◽  
Tetsuya Shimamura
Author(s):  
William Krakow

In the past few years on-line digital television frame store devices coupled to computers have been employed to attempt to measure the microscope parameters of defocus and astigmatism. The ultimate goal of such tasks is to fully adjust the operating parameters of the microscope and obtain an optimum image for viewing in terms of its information content. The initial approach to this problem, for high resolution TEM imaging, was to obtain the power spectrum from the Fourier transform of an image, find the contrast transfer function oscillation maxima, and subsequently correct the image. This technique requires a fast computer, a direct memory access device and even an array processor to accomplish these tasks on limited size arrays in a few seconds per image. It is not clear that the power spectrum could be used for more than defocus correction since the correction of astigmatism is a formidable problem of pattern recognition.


Author(s):  
Y. Ishida ◽  
H. Ishida ◽  
K. Kohra ◽  
H. Ichinose

IntroductionA simple and accurate technique to determine the Burgers vector of a dislocation has become feasible with the advent of HVEM. The conventional image vanishing technique(1) using Bragg conditions with the diffraction vector perpendicular to the Burgers vector suffers from various drawbacks; The dislocation image appears even when the g.b = 0 criterion is satisfied, if the edge component of the dislocation is large. On the other hand, the image disappears for certain high order diffractions even when g.b ≠ 0. Furthermore, the determination of the magnitude of the Burgers vector is not easy with the criterion. Recent image simulation technique is free from the ambiguities but require too many parameters for the computation. The weak-beam “fringe counting” technique investigated in the present study is immune from the problems. Even the magnitude of the Burgers vector is determined from the number of the terminating thickness fringes at the exit of the dislocation in wedge shaped foil surfaces.


Author(s):  
P. Fraundorf ◽  
B. Armbruster

Optical interferometry, confocal light microscopy, stereopair scanning electron microscopy, scanning tunneling microscopy, and scanning force microscopy, can produce topographic images of surfaces on size scales reaching from centimeters to Angstroms. Second moment (height variance) statistics of surface topography can be very helpful in quantifying “visually suggested” differences from one surface to the next. The two most common methods for displaying this information are the Fourier power spectrum and its direct space transform, the autocorrelation function or interferogram. Unfortunately, for a surface exhibiting lateral structure over several orders of magnitude in size, both the power spectrum and the autocorrelation function will find most of the information they contain pressed into the plot’s origin. This suggests that we plot power in units of LOG(frequency)≡-LOG(period), but rather than add this logarithmic constraint as another element of abstraction to the analysis of power spectra, we further recommend a shift in paradigm.


1988 ◽  
Vol 49 (C2) ◽  
pp. C2-405-C2-408 ◽  
Author(s):  
D. BAUMS ◽  
M. SERÉNYI ◽  
W. ELSÄSSER ◽  
E. O. GÖBEL

2018 ◽  
Vol 35 (3-4) ◽  
pp. 277-288
Author(s):  
Xiaxia ZENG ◽  
Zhenhua SONG ◽  
Wenzhong LIN ◽  
Haibo LUO

Author(s):  
Katsuhiko Yamamoto ◽  
Toshio Irino ◽  
Toshie Matsui ◽  
Shoko Araki ◽  
Keisuke Kinoshita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document