Importance of Ice Edge Phytoplankton Production in the Southern Ocean

BioScience ◽  
1986 ◽  
Vol 36 (4) ◽  
pp. 251-257 ◽  
Author(s):  
Walker O. Smith, ◽  
David M. Nelson
2003 ◽  
Vol 50 (3-4) ◽  
pp. 579-603 ◽  
Author(s):  
Ken O Buesseler ◽  
Richard T Barber ◽  
Mary-Lynn Dickson ◽  
Michael R Hiscock ◽  
Jefferson Keith Moore ◽  
...  
Keyword(s):  

Polar Biology ◽  
2020 ◽  
Vol 43 (4) ◽  
pp. 343-357 ◽  
Author(s):  
Kenji Konishi ◽  
Tatsuya Isoda ◽  
Takeharu Bando ◽  
Shingo Minamikawa ◽  
Lars Kleivane
Keyword(s):  

1992 ◽  
Vol 338 (1285) ◽  
pp. 289-297 ◽  

In the Southern Ocean, inorganic macronutrients are very rarely depleted by phytoplankton growth. This has led to speculation on possible additional CO 2 drawdown in this region. However, the effects of climate change can only be predicted once the role of environmental and biotic factors limiting phytoplankton carbon fixation are understood. It is clear that the Southern Ocean is heterogeneous, and no single factor controls prim ary production overall. Ice cover and vertical mixing influence algal growth rates by m odulating radiance flux. Micronutrients, especially iron, may limit growth in some areas. Primary production is also suppressed by high removal rates of algal biomass. Grazing by zooplankton is the major factor determining magnitude and quality of vertical particle flux. Several of the physical controls on phytoplankton production are sensitive to climate change. Although it is impossible to make numerical predictions of future change on the basis of our present knowledge, qualitative assessments can be put forward on the basis of model predictions of climate change and known factors controlling prim ary production. Changes in water temperature and in windinduced mixing are likely to be slight and have little effect. Model predictions of changes in sea-ice cover vary widely, making prediction of biogeochemical effects impossible. Even if climatic change induces increased nutrient uptake, there are several reasons to suspect that carbon sequestration will be ineffective in comparison with continuing anthropogenic CO 2 emission.


2014 ◽  
Vol 11 (17) ◽  
pp. 4713-4731 ◽  
Author(s):  
S. Wang ◽  
D. Bailey ◽  
K. Lindsay ◽  
J. K. Moore ◽  
M. Holland

Abstract. Iron is a key nutrient for phytoplankton growth in the surface ocean. At high latitudes, the iron cycle is closely related to the dynamics of sea ice. In recent decades, Arctic sea ice cover has been declining rapidly and Antarctic sea ice has exhibited large regional trends. A significant reduction of sea ice in both hemispheres is projected in future climate scenarios. In order to adequately study the effect of sea ice on the polar iron cycle, sea ice bearing iron was incorporated in the Community Earth System Model (CESM). Sea ice acts as a reservoir for iron during winter and releases the trace metal to the surface ocean in spring and summer. Simulated iron concentrations in sea ice generally agree with observations in regions where iron concentrations are relatively low. The maximum iron concentrations simulated in Arctic and Antarctic sea ice are much lower than observed, which is likely due to underestimation of iron inputs to sea ice or missing mechanisms. The largest iron source to sea ice is suspended sediments, contributing fluxes of iron of 2.2 × 108 mol Fe month−1 in the Arctic and 4.1 × 106 mol Fe month−1 in the Southern Ocean during summer. As a result of the iron flux from ice, iron concentrations increase significantly in the Arctic. Iron released from melting ice increases phytoplankton production in spring and summer and shifts phytoplankton community composition in the Southern Ocean. Results for the period of 1998 to 2007 indicate that a reduction of sea ice in the Southern Ocean will have a negative influence on phytoplankton production. Iron transport by sea ice appears to be an important process bringing iron to the central Arctic. The impact of ice to ocean iron fluxes on marine ecosystems is negligible in the current Arctic Ocean, as iron is not typically the growth-limiting nutrient. However, it may become a more important factor in the future, particularly in the central Arctic, as iron concentrations will decrease with declining sea ice cover and transport.


2014 ◽  
Vol 11 (2) ◽  
pp. 2383-2418 ◽  
Author(s):  
S. Wang ◽  
D. Bailey ◽  
K. Lindsay ◽  
K. Moore ◽  
M. Holland

Abstract. Iron is a key nutrient for phytoplankton growth in the surface ocean. At high latitudes, the iron cycle is closely related to sea ice. In recent decades, Arctic sea ice cover has been declining rapidly and Antarctic sea ice has exhibited large regional trends. A significant reduction of sea ice in both hemispheres is projected in future climate scenarios. To study impacts of sea ice on the iron cycle, iron sequestration in ice is incorporated to the Biogeochemical Elemental Cycling (BEC) model. Sea ice acts as a reservoir of iron during winter and releases iron to the surface ocean in spring and summer. Simulated iron concentrations in sea ice generally agree with observations, in regions where iron concentrations are lower. The maximum iron concentrations simulated in the Arctic sea ice and the Antarctic sea ice are 192 nM and 134 nM, respectively. These values are much lower than observed, which is likely due to missing biological processes in sea ice. The largest iron source to sea ice is suspended sediments, contributing fluxes of iron of 2.2 × 108 mol Fe month−1 to the Arctic and 4.1 × 106 mol Fe month−1 to the Southern Ocean during summer. As a result of the iron flux from ice, iron concentrations increase significantly in the Arctic. Iron released from melting ice increases phytoplankton production in spring and summer and shifts phytoplankton community composition in the Southern Ocean. Simulation results for the period of 1998 to 2007 indicate that a reduction of sea ice in the Southern Ocean will have a negative influence on phytoplankton production. Iron transport by sea ice appears to be an important process bringing iron to the central Arctic. Impacts of iron fluxes from ice to ocean on marine ecosystems are negligible in the current Arctic Ocean, as iron is not typically the growth-limiting nutrient. However, it may become a more important factor in the future, particularly in the central Arctic, as iron concentrations will decrease with declining sea ice cover and transport.


2020 ◽  
Author(s):  
Ryan A. Green ◽  
Laurie Menviel ◽  
Katrin J. Meissner ◽  
Xavier Crosta

Abstract. Sea-ice cover over the Southern Ocean responds to and impacts Southern Ocean dynamics and, thus, mid to high latitude climate in the Southern Hemisphere. In addition, sea-ice cover can significantly modulate the carbon exchange between the atmosphere and the ocean. As climate models are the only tool available to project future climate changes, it is important to assess their performance in simulating past changes. The Last Glacial Maximum (LGM, ∼21,000 years ago) represents an interesting target as it is a relatively well documented period with climatic conditions and a carbon cycle very different from pre-industrial conditions. Here, we study the changes in seasonal Antarctic sea-ice cover as simulated in numerical PMIP3 and LOVECLIM simulations of the LGM, and their relationship with windstress and ocean temperature. Simulations and paleo-proxy records suggest a fairly well constrained glacial winter sea-ice edge at 51.5° S (1 sigma range: 50°–55.5° S). Simulated glacial summer sea-ice cover however differs widely between models, ranging from almost no sea ice to a sea-ice edge reaching 55.5° S. The austral summer multi-model mean sea-ice edge lies at ∼60.5° S (1 sigma range: 57.5°–70.5° S). Given the lack of strong constraints on the summer sea-ice edge based on sea-ice proxy records, we extend our model-data comparison to summer sea-surface temperature. Our analysis suggests that the multi-model mean summer sea ice provides a reasonable, albeit upper end, estimate of the austral summer sea-ice edge allowing us to conclude that the multi-model mean of austral summer and winter sea-ice cover seem to provide good estimates of LGM conditions. Using these best estimates, we find that there was a larger sea-ice seasonality during the LGM compared to the present day.


1982 ◽  
Vol 3 ◽  
pp. 249-254 ◽  
Author(s):  
Claire L. Parkinson ◽  
Donald J. Cavalieri

Examination of satellite-derived 1973–75 sea-ice concentrations for the Southern Ocean and comparison with 1 000 mbar temperatures and sea-level pressures reveal considerable Interannual variability in both the ice and atmospheric fields plus strong suggestions of ice/atmosphere interconnections. The mean position of the ice edge undergoes a strong yearly cycle that lags the cycle of the zonally-averaged temperatures by about one month, but the mean ice edge does not contain small-term fluctuations or interannual variability to the same extent as either the temperature or the pressure. Regionally, the ice varies much more noticeably from year-to-year, with the interannual contrasts showing strong spatial dependence in all months and strong spatial coherence in winter. These are illustrated by selected maps of monthly differences in ice concentrations between 1973 and 1974 and between 1974 and 1975. It is shown that the interannual ice differences can, in many cases, be attributed to the Interannual differences in the positioning and intensity of cyclonic and anticyclonic systems.


Sign in / Sign up

Export Citation Format

Share Document