Analysis of the Abundance of Submersed Aquatic Vegetation Communities in the Chesapeake Bay

Estuaries ◽  
2000 ◽  
Vol 23 (1) ◽  
pp. 115 ◽  
Author(s):  
Kenneth A. Moore ◽  
David J. Wilcox ◽  
Robert J. Orth
BioScience ◽  
2017 ◽  
Vol 67 (8) ◽  
pp. 698-712 ◽  
Author(s):  
Robert J. Orth ◽  
William C. Dennison ◽  
Jonathan S. Lefcheck ◽  
Cassie Gurbisz ◽  
Michael Hannam ◽  
...  

2010 ◽  
Vol 33 (5) ◽  
pp. 1144-1163 ◽  
Author(s):  
Robert J. Orth ◽  
Michael R. Williams ◽  
Scott R. Marion ◽  
David J. Wilcox ◽  
Tim J. B. Carruthers ◽  
...  

2021 ◽  
Vol 9 (8) ◽  
pp. 849
Author(s):  
Lorie W. Staver ◽  
Jeffrey C. Cornwell ◽  
Nicholas J. Nidzieko ◽  
Kenneth W. Staver ◽  
J. Court Stevenson ◽  
...  

Tidal marsh restoration using dredged material is being undertaken in many coastal areas to replace lost habitat and ecosystem services due to tidal marsh loss. The fate of high levels of nitrogen (N) in fine-grained dredged material used as a substrate for marsh restoration is uncertain, but if exported tidally may cause subtidal habitat degradation. In this study, a mass balance was developed to characterize N fluxes in a two-year-old restored tidal marsh constructed with fine-grained dredged material at Poplar Island, MD, in Chesapeake Bay, and to evaluate the potential impact on the adjacent submersed aquatic vegetation (SAV) habitat. Denitrification and N accumulation in Spartina organic matter were identified as the major sinks (21.31 and 28.5 mg N m−2 d−1, respectively), while tidal export of TN was more modest (9.4 mg N m−2 d−1) and inorganic N export was low (1.59 mg N m−2 d−1). Internal cycling helped retain N within the marsh. Mineralization of N associated with labile organic matter in the dredged material was likely a large, but unquantified, source of N supporting robust plant growth and N exports. Exceedances of SAV water quality habitat requirements in the subtidal region adjacent to the marsh were driven by elevated Chesapeake Bay concentrations rather than enrichment by the marsh.


2021 ◽  
Vol 8 ◽  
Author(s):  
Iacopo Vona ◽  
Cindy M. Palinkas ◽  
William Nardin

Rising sea levels and the increased frequency of extreme events put coastal communities at serious risk. In response, shoreline armoring for stabilization has been widespread. However, this solution does not take the ecological aspects of the coasts into account. The “living shoreline” technique includes coastal ecology by incorporating natural habitat features, such as saltmarshes, into shoreline stabilization. However, the impacts of living shorelines on adjacent benthic communities, such as submersed aquatic vegetation (SAV), are not yet clear. In particular, while both marshes and SAV trap the sediment necessary for their resilience to environmental change, the synergies between the communities are not well-understood. To help quantify the ecological and protective (shoreline stabilization) aspects of living shorelines, we presented modeling results using the Delft3D-SWAN system on sediment transport between the created saltmarshes of the living shorelines and adjacent SAV in a subestuary of Chesapeake Bay. We used a double numerical approach to primarily validate deposition measurements made in the field and to further quantify the sediment balance between the two vegetation communities using an idealized model. This model used the same numerical domain with different wave heights, periods, and basin slopes and includes the presence of rip-rap, which is often used together with marsh plantings in living shorelines, to look at the influences of artificial structures on the sediment exchange between the plant communities. The results of this study indicated lower shear stress, lower erosion rates, and higher deposition rates within the SAV bed compared with the scenario with the marsh only, which helped stabilize bottom sediments by making the sediment balance positive in case of moderate wave climate (deposition within the two vegetations higher than the sediment loss). The presence of rip-rap resulted in a positive sediment balance, especially in the case of extreme events, where sediment balance was magnified. Overall, this study concluded that SAV helps stabilize bed level and shoreline, and rip-rap works better with extreme conditions, demonstrating how the right combination of natural and built solutions can work well in terms of ecology and coastal protection.


Sign in / Sign up

Export Citation Format

Share Document