Empirical Bayes Point Estimation in a Family of Probability Distributions

1972 ◽  
Vol 40 (2) ◽  
pp. 147 ◽  
Author(s):  
W. G. Nichols ◽  
Chris P. Tsokos
2018 ◽  
pp. 64-106
Author(s):  
J.S. Maritz ◽  
T. Lwin

2019 ◽  
Vol 20 (01) ◽  
pp. 2050008 ◽  
Author(s):  
Lifeng Xin ◽  
Xiaozhen Li ◽  
Jiaxin Zhang ◽  
Yan Zhu ◽  
Lin Xiao

Over the last decades, the resonance-related dynamics for bridge systems subjected to a moving train has been researched and discussed from mechanics, physics and mathematics. In the current work, new perspectives of train-induced resonance analysis are investigated through introducing random propagation process into the train–bridge dynamic interactions. Besides, the Nataf-transformation-based point estimation method is applied to generate pseudorandom variables following arbitrarily correlated probability distributions. A three-dimensional (3D) nonlinear train-ballasted track–bridge interaction model founded on fundamental physical and mechanical principles is employed to convey and depict train–bridge interactions with random properties considered. After that, extensive applications are illustrated in detail for revealing the statistical characteristics of the so-called “random resonance”. Numerical results show that the critical train speeds associated with resonance and cancelation are random in essence owing to the variability of system parameters; the correlation between parameters exerts obvious influences on system dynamic behaviors; the last vehicle of a train will be in more violent vibrations compared to the front vehicles; the influences of track irregularities on the wheel–rail interactions are significantly greater than those of resonance.


2022 ◽  
pp. 1-24
Author(s):  
Kohei Ichikawa ◽  
Asaki Kataoka

Abstract Animals make efficient probabilistic inferences based on uncertain and noisy information from the outside environment. It is known that probabilistic population codes, which have been proposed as a neural basis for encoding probability distributions, allow general neural networks (NNs) to perform near-optimal point estimation. However, the mechanism of sampling-based probabilistic inference has not been clarified. In this study, we trained two types of artificial NNs, feedforward NN (FFNN) and recurrent NN (RNN), to perform sampling-based probabilistic inference. Then we analyzed and compared their mechanisms of sampling. We found that sampling in RNN was performed by a mechanism that efficiently uses the properties of dynamical systems, unlike FFNN. In addition, we found that sampling in RNNs acted as an inductive bias, enabling a more accurate estimation than in maximum a posteriori estimation. These results provide important arguments for discussing the relationship between dynamical systems and information processing in NNs.


2010 ◽  
Vol 92 (5-6) ◽  
pp. 423-441 ◽  
Author(s):  
SHIZHONG XU ◽  
ZHIQIU HU

SummaryMethods of genomic value prediction are reviewed. The majority of the methods are related to mixed model methodology, either explicitly or implicitly, by treating systematic environmental effects as fixed and quantitative trait locus (QTL) effects as random. Six different methods are reviewed, including least squares (LS), ridge regression, Bayesian shrinkage, least absolute shrinkage and selection operator (Lasso), empirical Bayes and partial least squares (PLS). The LS and PLS methods are non-Bayesian because they do not require probability distributions for the data. The PLS method is introduced as a special dimension reduction scheme to handle high-density marker information. Theory and methods of cross-validation are described. The leave-one-out cross-validation approach is recommended for model validation. A working example is used to demonstrate the utility of genome selection (GS) in barley. The data set contained 150 double haploid lines and 495 DNA markers covering the entire barley genome, with an average marker interval of 2·23 cM. Eight quantitative traits were included in the analysis. GS using the empirical Bayesian method showed high predictability of the markers for all eight traits with a mean accuracy of prediction of 0·70. With traditional marker-assisted selection (MAS), the average accuracy of prediction was 0·59, giving an average gain of GS over MAS of 0·11. This study provided strong evidence that GS using marker information alone can be an efficient tool for plant breeding.


Change point reflects a qualitative change in things. It has gained some applications in the field of reliability. In order to estimate the position parameters of the change point, a Bayesian change point model based on masked data and Gibbs sampling was proposed. By filling in missing lifetime data and introducing latent variables, the simple likelihood function is obtained for exponential distribution parallel system under censored data. This paper describes the probability distributions and random generation methods of the missing lifetime variables and latent variables, and obtains the full conditional distributions of the change point position parameters and other unknown parameters. By Gibbs sampling and estimation of unknown parameters, the estimates of the mean, median, and quantile of the parameter posterior distribution are obtained. The specific steps of Gibbs sampling are introduced in detail. The convergence of Gibbs sampling is also diagnosed. Random simulation results show that the estimations are fairly accurate.


Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. W15-W27 ◽  
Author(s):  
Alberto Malinverno ◽  
Robert L. Parker

We present two approaches to invert geophysical measurements and estimate subsurface properties and their uncertainties when little is known a priori about the size of the errors associated with the data. We illustrate these approaches by inverting first-arrival traveltimes of seismic waves measured in a vertical well to infer the variation of compressional slowness in depth. First, we describe a Bayesian formulation based on probability distributions that define prior knowledge about the slowness and the data errors. We use an empirical Bayes approach, where hyperparameters are not well known ahead of time (e.g., the variance of the data errors) and are estimated from their most probable value, given the data. The second approach is a non-Bayesian formulation that we call spectral, in the sense that it uses the power spectral density of the traveltime data to constrain the inversion (e.g., to estimate the variance of the data errors). In the spectral approach, we vary assumptions made about the characteristics of the slowness signal and evaluate the resulting slowness estimates and their uncertainties. This approach is computationally simple and starts from a few assumptions. These assumptions can be checked during the analysis. On the other hand, it requires evenly spaced traveltime measurements, and it cannot be extended easily (e.g., to data that have gaps). In contrast, the Bayesian framework is based on a general theory that can be generalized immediately, but it is more involved computationally. Despite the conceptual and practical differences, we find that the two approaches give the same results when they start from the same assumptions: The allegiance to a Bayesian or non-Bayesian formulation matters less than what one is willing to assume when solving the inverse problem.


2021 ◽  
Vol 5 (5) ◽  
pp. 755-774
Author(s):  
Yadpirun Supharakonsakun

The Bayesian approach, a non-classical estimation technique, is very widely used in statistical inference for real world situations. The parameter is considered to be a random variable, and knowledge of the prior distribution is used to update the parameter estimation. Herein, two Bayesian approaches for Poisson parameter estimation by deriving the posterior distribution under the squared error loss or quadratic loss functions are proposed. Their performances were compared with frequentist (maximum likelihood estimator) and Empirical Bayes approaches through Monte Carlo simulations. The mean square error was used as the test criterion for comparing the methods for point estimation; the smallest value indicates the best performing method with the estimated parameter value closest to the true parameter value. Coverage Probabilities (CPs) and average lengths (ALs) were obtained to evaluate the performances of the methods for constructing confidence intervals. The results reveal that the Bayesian approaches were excellent for point estimation when the true parameter value was small (0.5, 1 and 2). In the credible interval comparison, these methods obtained CP values close to the nominal 0.95 confidence level and the smallest ALs for large sample sizes (50 and 100), when the true parameter value was small (0.5, 1 and 2). Doi: 10.28991/esj-2021-01310 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document