Phase-type distributions and invariant polytopes

1991 ◽  
Vol 23 (3) ◽  
pp. 515-535 ◽  
Author(s):  
Colm Art O'Cinneide

The notion of an invariant polytope played a central role in the proof of the characterization of phase-type distributions. The purpose of this paper is to develop invariant polytope techniques further. We derive lower bounds on the number of states needed to represent a phase-type distribution based on poles of its Laplace–Stieltjes transform. We prove that every phase-type distribution whose transform has only real poles has a bidiagonal representation. We close with three short applications of the invariant polytope idea. Taken together, the results of this paper show that invariant polytopes provide a natural approach to many questions about phase-type distributions.

1991 ◽  
Vol 23 (03) ◽  
pp. 515-535 ◽  
Author(s):  
Colm Art O'Cinneide

The notion of an invariant polytope played a central role in the proof of the characterization of phase-type distributions. The purpose of this paper is to develop invariant polytope techniques further. We derive lower bounds on the number of states needed to represent a phase-type distribution based on poles of its Laplace–Stieltjes transform. We prove that every phase-type distribution whose transform has only real poles has a bidiagonal representation. We close with three short applications of the invariant polytope idea. Taken together, the results of this paper show that invariant polytopes provide a natural approach to many questions about phase-type distributions.


1987 ◽  
Vol 24 (3) ◽  
pp. 696-708 ◽  
Author(s):  
Arie Hordijk ◽  
Ad Ridder

A general method to obtain insensitive upper and lower bounds for the stationary distribution of queueing networks is sketched. It is applied to an overflow model. The bounds are shown to be valid for service distributions with decreasing failure rate. A characterization of phase-type distributions with decreasing failure rate is given. An approximation method is proposed. The methods are illustrated with numerical results.


1985 ◽  
Vol 22 (01) ◽  
pp. 247-250 ◽  
Author(s):  
David Assaf ◽  
Naftali A. Langberg

It is shown that any phase-type distribution can be represented as a proper mixture of two distinct phase-type distributions. Using different terms, it is shown that the class of phase-type distributions does not include any extreme ones. A similar result holds for the subclass of upper-triangular phase-type distributions.


1987 ◽  
Vol 24 (03) ◽  
pp. 696-708 ◽  
Author(s):  
Arie Hordijk ◽  
Ad Ridder

A general method to obtain insensitive upper and lower bounds for the stationary distribution of queueing networks is sketched. It is applied to an overflow model. The bounds are shown to be valid for service distributions with decreasing failure rate. A characterization of phase-type distributions with decreasing failure rate is given. An approximation method is proposed. The methods are illustrated with numerical results.


1985 ◽  
Vol 22 (1) ◽  
pp. 247-250 ◽  
Author(s):  
David Assaf ◽  
Naftali A. Langberg

It is shown that any phase-type distribution can be represented as a proper mixture of two distinct phase-type distributions. Using different terms, it is shown that the class of phase-type distributions does not include any extreme ones. A similar result holds for the subclass of upper-triangular phase-type distributions.


Author(s):  
A. KRISHNAMOORTHY ◽  
VISWANATH C. NARAYANAN ◽  
T. G. DEEPAK

In this paper the reliability of a repairable k-out-of-n system is studied. Repair times of components follow a phase type distribution. In addition, the service facility offers service to external customers which arrive according to a MAP. An external customer, who finds an idle server on its arrival, is immediately selected for service. Otherwise, the external customer joins the queue in a pool of postponed work of infinite capacity with probability 1 if the number of failed components in the system is < M (M ≤ n - k + 1) and if the number of failed components ≥ M it joins the pool with probability γ or leaves the system forever. Repair times of components of the system and that of the external customers have independent phase type distributions. At a service completion epoch if the buffer has less than L customers, a pooled customer is taken for service with probability p, 0 < p < 1 If at a service completion epoch no component of the system is waiting for repair, a pooled customer, if any waiting, is immediately taken for service. We obtain the system state distribution under the condition of stability. A number of performance characteristics are derived. A cost function involving L, M, γ and p is constructed and its behaviour investigated numerically.


2010 ◽  
Vol 47 (03) ◽  
pp. 611-629
Author(s):  
Mark Fackrell ◽  
Qi-Ming He ◽  
Peter Taylor ◽  
Hanqin Zhang

This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.


2013 ◽  
Vol 31 (4) ◽  
pp. 671-683 ◽  
Author(s):  
A. Krishnamoorthy ◽  
P. K. Pramod ◽  
S. R. Chakravarthy

2018 ◽  
Vol 6 (1) ◽  
pp. 131-138 ◽  
Author(s):  
Femin Yalcin ◽  
Serkan Eryilmaz ◽  
Ali Riza Bozbulut

AbstractIn this paper, a generalized class of run shock models associated with a bivariate sequence {(Xi, Yi)}i≥1 of correlated random variables is defined and studied. For a system that is subject to shocks of random magnitudes X1, X2, ... over time, let the random variables Y1, Y2, ... denote times between arrivals of successive shocks. The lifetime of the system under this class is defined through a compound random variable T = ∑Nt=1 Yt , where N is a stopping time for the sequence {Xi}i≤1 and represents the number of shocks that causes failure of the system. Another random variable of interest is the maximum shock size up to N, i.e. M = max {Xi, 1≤i≤ N}. Distributions of T and M are investigated when N has a phase-type distribution.


Sign in / Sign up

Export Citation Format

Share Document