The efficiency and heavy traffic properties of the score function method in sensitivity analysis of queueing models

1992 ◽  
Vol 24 (1) ◽  
pp. 172-201 ◽  
Author(s):  
Søren Asmussen ◽  
Reuven Y. Rubinstein

This paper studies computer simulation methods for estimating the sensitivities (gradient, Hessian etc.) of the expected steady-state performance of a queueing model with respect to the vector of parameters of the underlying distribution (an example is the gradient of the expected steady-state waiting time of a customer at a particular node in a queueing network with respect to its service rate). It is shown that such a sensitivity can be represented as the covariance between two processes, the standard output process (say the waiting time process) and what we call the score function process which is based on the score function. Simulation procedures based upon such representations are discussed, and in particular a control variate method is presented. The estimators and the score function process are then studied under heavy traffic conditions. The score function process, when properly normalized, is shown to have a heavy traffic limit involving a certain variant of two-dimensional Brownian motion for which we describe the stationary distribution. From this, heavy traffic (diffusion) approximations for the variance constants in the large sample theory can be computed and are used as a basis for comparing different simulation estimators. Finally, the theory is supported by numerical results.

1992 ◽  
Vol 24 (01) ◽  
pp. 172-201 ◽  
Author(s):  
Søren Asmussen ◽  
Reuven Y. Rubinstein

This paper studies computer simulation methods for estimating the sensitivities (gradient, Hessian etc.) of the expected steady-state performance of a queueing model with respect to the vector of parameters of the underlying distribution (an example is the gradient of the expected steady-state waiting time of a customer at a particular node in a queueing network with respect to its service rate). It is shown that such a sensitivity can be represented as the covariance between two processes, the standard output process (say the waiting time process) and what we call the score function process which is based on the score function. Simulation procedures based upon such representations are discussed, and in particular a control variate method is presented. The estimators and the score function process are then studied under heavy traffic conditions. The score function process, when properly normalized, is shown to have a heavy traffic limit involving a certain variant of two-dimensional Brownian motion for which we describe the stationary distribution. From this, heavy traffic (diffusion) approximations for the variance constants in the large sample theory can be computed and are used as a basis for comparing different simulation estimators. Finally, the theory is supported by numerical results.


1999 ◽  
Vol 10 (5) ◽  
pp. 497-509 ◽  
Author(s):  
CHARLES KNESSL

We consider the classic shortest queue problem in the heavy traffic limit. We assume that the second server works slowly and that the service rate of the first server is nearly equal to the arrival rate. Solving for the (asymptotic) joint steady state queue length distribution involves analyzing a backward parabolic partial differential equation, together with appropriate side conditions. We explicitly solve this problem. We thus obtain a two-dimensional approximation for the steady state queue length probabilities.


2004 ◽  
Vol 36 (04) ◽  
pp. 1021-1045 ◽  
Author(s):  
Sanjay Shakkottai ◽  
R. Srikant ◽  
Alexander L. Stolyar

We consider the problem of scheduling the transmissions of multiple data users (flows) sharing the same wireless channel (server). The unique feature of this problem is the fact that the capacity (service rate) of the channel varies randomly with time and asynchronously for different users. We study a scheduling policy called the exponential scheduling rule, which was introduced in an earlier paper. Given a system withNusers, and any set of positive numbers {an},n= 1, 2,…,N, we show that in a heavy-traffic limit, under a nonrestrictive ‘complete resource pooling’ condition, this algorithm has the property that, for each timet, it (asymptotically) minimizes maxnanq̃n(t), whereq̃n(t) is the queue length of usernin the heavy-traffic regime.


2012 ◽  
Vol 17 (3) ◽  
pp. 327-342 ◽  
Author(s):  
Saulius Minkevičius ◽  
Stasys Steišūnas

The object of this research in the queueing theory is theorems about the functional strong laws of large numbers (FSLLN) under the conditions of heavy traffic in an open queueing network (OQN). The FSLLN is known as a fluid limit or fluid approximation. In this paper, FSLLN are proved for the values of important probabilistic characteristics of the OQN investigated as well as the virtual waiting time of a customer and the queue length of customers. As applications of the proved theorems laws of Little in OQN are presented.


2004 ◽  
Vol 36 (4) ◽  
pp. 1021-1045 ◽  
Author(s):  
Sanjay Shakkottai ◽  
R. Srikant ◽  
Alexander L. Stolyar

We consider the problem of scheduling the transmissions of multiple data users (flows) sharing the same wireless channel (server). The unique feature of this problem is the fact that the capacity (service rate) of the channel varies randomly with time and asynchronously for different users. We study a scheduling policy called the exponential scheduling rule, which was introduced in an earlier paper. Given a system with N users, and any set of positive numbers {an}, n = 1, 2,…, N, we show that in a heavy-traffic limit, under a nonrestrictive ‘complete resource pooling’ condition, this algorithm has the property that, for each time t, it (asymptotically) minimizes maxnanq̃n(t), where q̃n(t) is the queue length of user n in the heavy-traffic regime.


2015 ◽  
Vol 29 (2) ◽  
pp. 153-180 ◽  
Author(s):  
A. Izagirre ◽  
I.M. Verloop ◽  
U. Ayesta

We study the steady-state queue-length vector in a multi-class queue with relative priorities. Upon service completion, the probability that the next served customer is from class k is controlled by class-dependent weights. Once a customer has started service, it is served without interruption until completion. We establish a state-space collapse for the scaled queue-length vector in the heavy-traffic regime, that is, in the limit the scaled queue-length vector is distributed as the product of an exponentially distributed random variable and a deterministic vector. We observe that the scaled queue length reduces as classes with smaller mean service requirement obtain relatively larger weights. We finally show that the scaled waiting time of a class-k customer is distributed as the product of two exponentially distributed random variables.


2000 ◽  
Vol 37 (01) ◽  
pp. 212-223 ◽  
Author(s):  
Stephen R. E. Turner

We prove a new heavy traffic limit result for a simple queueing network under a ‘join the shorter queue’ policy, with the amount of traffic which has a routeing choice tending to zero as heavy traffic is approached. In this limit, the system considered does not exhibit state space collapse as in previous work by Foschini and Salz, and Reiman, but there is nevertheless some resource pooling gain over a policy of random routeing.


1990 ◽  
Vol 22 (1) ◽  
pp. 178-210 ◽  
Author(s):  
Xi-Ren Cao

The paper studies the sensitivity of the throughput with respect to a mean service rate in a closed queueing network with exponentially distributed service requirements and state-dependent service rates. The study is based on perturbation analysis of queueing networks. A new concept, the realization factor of a perturbation, is introduced. The properties of realization factors are discussed, and a set of equations specifying the realization factors are derived. The elasticity of the steady state throughput with respect to a mean service rate equals the product of the steady state probability and the corresponding realization factor. This elasticity can be estimated by applying a perturbation analysis algorithm to a sample path of the system. The sample path elasticity of the throughput with respect to a mean service rate converges with probability 1 to the elasticity of the steady state throughput. The theory provides an analytical method of calculating the throughput sensitivity and justifies the application of perturbation analysis.


Author(s):  
J. F. C. Kingman

ABSTRACTThe queue M |G| l is considered in the case in which customers are served in random order. A formal solution is obtained for the waiting time distribution in the steady state, and is used to consider the exponential decay of the distribution. The moments of the waiting time are examined, and the asymptotic form of the distribution in heavy traffic is found. Finally, the problem is related to those of the busy period and the approach to the steady state.


2019 ◽  
Vol 288 (1) ◽  
pp. 417-434
Author(s):  
Anatoly Nazarov ◽  
János Sztrik ◽  
Anna Kvach ◽  
Ádám Tóth

AbstractThe aim of the present paper is to investigate the steady-state distribution of response and waiting time in a finite-source M / M / 1 retrial queuing system with collision of customers where the server is subjects to random breakdowns and repairs depending on whether it is idle or busy. An asymptotic method is applied under the condition that the number of sources tends to infinity, the primary request generation rate, retrial rate tend to zero while service rate, failure rates, repair rate are fixed. As the result of the analysis it is shown that the steady-state probability distribution of the number of transitions/retrials of the customer into the orbit is geometric with a given parameter, and the normalized sojourn time of the customer in the system follows a generalized exponential distribution. It is also proved that the limiting distributions of the normalized sojourn time of the customer in the system and the normalized sojourn/waiting time of the customer in the orbit coincide. The novelty of this investigation is the introduction of failure and repair of the server. Approximations of prelimit distributions obtained with the help of stochastic simulation by asymptotic one are considered and several illustrative examples show the accuracy and range of applicability of the proposed asymptotic method.


Sign in / Sign up

Export Citation Format

Share Document