Coarse Woody Debris in Douglas-Fir Forests of Western Oregon and Washington

Ecology ◽  
1988 ◽  
Vol 69 (6) ◽  
pp. 1689-1702 ◽  
Author(s):  
Thomas A. Spies ◽  
Jerry F. Franklin ◽  
Ted B. Thomas
2003 ◽  
Vol 11 (S1) ◽  
pp. S135-S157 ◽  
Author(s):  
M C Feller

This paper synthesizes data extracted from the literature and data collected in various studies by the author on the quantity, characteristics, and functional importance of coarse woody debris (CWD) in the old-growth forests of British Columbia (B.C.). There is little agreement in the literature about the minimum diameter of CWD or the number of decay classes recognized. In western North America, five decay classes are commonly used, but recent studies suggest fewer decay classes are preferable. Comparisons among decay classes and biogeoclimatic zones and subzones in B.C. reveal that quantities and volumes are greatest (up to approximately 60 kg/m2 and approximately 1800 m3/ha, respectively), and CWD persists the longest (sometimes in excess of 1000 years) in the Coastal Western Hemlock (CWH) biogeoclimatic zone. The quantity and ground cover of CWD increase with forest productivity. Persistence of CWD has varied from less than 100 to over 800 years in two coastal (CWH and Mountain Hemlock (MH)) and three interior (Interior Douglas-fir (IDF), Interior Cedar–Hemlock (ICH), and Engelmann Spruce – Subalpine Fir (ESSF)) biogeoclimatic zones. Trends in CWD quantity with forest age in managed coastal B.C. forests suggest a U-shaped curve, with greater quantities occurring in recent cutovers than in old-growth forests, and lowest quantities occurring in middle-aged forests. This may be the normal trend in CWD with forest age, with departures from this trend resulting from disturbance- or environment-specific factors. Relatively large amounts of data exist on the characteristics of CWD in the CWH, IDF, ICH, ESSF, and Boreal White and Black Spruce (BWBS) biogeoclimatic zones, but such data for the Coastal Douglas-fir, Sub-Boreal Pine–Spruce, Sub-Boreal Spruce (SBS), and Spruce–Willow–Birch biogeoclimatic zones appear relatively sparse. There have been few studies of the functional role of CWD in B.C. forests, but those studies that have been completed indicate that CWD is an important habitat component for some plant and animal species. A total of 169 plant species, including >95% of all lichens and liverworts, were found to grow on CWD in old-growth forests in the CWH, MH, IDF, ICH, and ESSF biogeoclimatic zones. One third of these species were restricted to CWD. Studies in several biogeoclimatic zones have found that CWD provided preferred habitat for and was associated with higher populations of some small animal species, such as shrews, some voles, and some salamanders, in old-growth forests, but the effects varied with species and biogeoclimatic zone. The nutrient cycling role of CWD is not yet well known, but it currently appears to be relatively insignificant in B.C. old-growth forests. Although it has been considered that CWD could increase mineral soil acidification and eluviation, no evidence for this was found in a study of the CWH, MH, IDF, ICH, ESSF, BWBS, and SBS biogeoclimatic zones. Future studies of the functional role of CWD should consider both scale (square metre vs. hectare) and temporal (changes in CWD with forest age) issues, as studies including these are sparse and both may be important. Key words: biogeoclimatic zones, British Columbia, coarse woody debris, old-growth forests.


1994 ◽  
Vol 24 (9) ◽  
pp. 1811-1817 ◽  
Author(s):  
James L. Marra ◽  
Robert L. Edmonds

Carbon dioxide evolution rates for downed logs (coarse woody debris) and the forest floor were measured in a temperate, old-growth rain forest in Olympic National Park, Washington, using the soda lime trap method. Measurements were taken every 4 weeks from October 22, 1991, to November 19, 1992. Respiration rates for Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) and western hemlock (Tsugaheterophylla (Raf.) Sarg.), logs were determined for decay classes 1–2, 3, and 5 in two diameter classes. Overall, western hemlock logs respired at a rate 35% higher (4.37 g CO2•m−2•day−1) than Douglas-fir logs (3.23 g CO2•m−2•day−1). Respiration rates for decay class 1–2 logs of both species were similar to decay class 5 logs (4.46 and 4.07 g CO2•m−2•day−1, respectively), but decay class 3 logs respired at a lower rate (3.23 g CO2•m−2•day−1). Seasonal patterns of respiration rates occurred, particularly for decay class 1 and 2 western hemlock logs where monthly averages ranged from a low of 2.67 g CO2•m−2•day−1 in February 1992 to a high of 8.30 g CO2•m−2•day−1 in September 1992. Rates for decay class 1–2 western hemlock logs were greater than those from the forest floor, which ranged from 3.42 to 7.13 g CO2•m−2•day−1. Respiration rates were depressed in late July and August compared with fall and spring owing to the summer drought characteristic of the Pacific Northwest. Large-diameter western hemlock logs in decay class 1–2 had higher respiration rates than small-diameter logs, whereas large-diameter decay class 3 western hemlock logs had lower respiration rates than small-diameter logs.


2000 ◽  
Vol 78 (8) ◽  
pp. 995-1001 ◽  
Author(s):  
J E Smith ◽  
R Molina ◽  
M MP Huso ◽  
M J Larsen

Yellow mycelia and cords of Piloderma fallax (Lib.) Stalp. were more frequently observed in old-growth stands than in younger managed stands of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Piloderma fallax frequency and percent cover data were collected from 900 plots in three replicate stands in each of three forest age classes over 2 years in both spring and fall. Piloderma fallax is strongly associated with stand age; it occurred in 57% of plots in old-growth, 6% of rotation-age, and 1% of young stands. Presence of Piloderma fallax was related to the percent cover of coarse woody debris (CWD) in decay class 5. Piloderma fallax was approximately 2.5 times more likely to occur in a plot with CWD decay class 5 present than in plots without. The probability that it would occur in a plot increased by approximately 20% for every 10% increase in percent cover of CWD decay class 5. However, the percent cover of Piloderma fallax was not strongly related to the percent cover of CWD in decay class 5. Frequency of occurrence did not differ among sampling times. Occurrence of Piloderma fallax may indicate suitable substrate for ectomycorrhizal fungi associated with CWD and may be important in forest management for the maintenance of biodiversity and old-growth components in young managed stands.Key words: Piloderma fallax, coarse woody debris, Pseudotsuga menziesii, forest management, ectomycorrhizal fungi, biodiversity.


1996 ◽  
Vol 26 (8) ◽  
pp. 1337-1345 ◽  
Author(s):  
James L. Marra ◽  
Robert L. Edmonds

Coarse woody debris (CWD) and soil respiration rates were measured using soda lime traps on a clearcut site in the Hoh River Valley on the west side of the Olympic Peninsula, Washington. The influence of species of CWD (western hemlock (Tsugaheterophylla (Raf.) Sarg.) and Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco)), decay class, and log diameter on respiration rates was determined. CWD and soil respiration were measured every 4 weeks from October 1991 to November 1992 along with CWD and soil temperature and moisture contents. Western hemlock logs respired at a significantly higher rate (4.05 g CO2•m−2•day−1) than Douglas-fir logs (2.94 g CO2•m−2•day−1). There were no significant differences between respiration rates for decay classes 1–2, 3, and 5 logs (4.47, 3.69, and 4.28 g CO2•m−2•day−1, respectively), and there was no strong relationship between CWD respiration rate and log diameter. The highest average respiration rate was from the soil in the clearcut (5.22 g CO2•m−2•day−1). Averaged for the year, log and soil respiration rates in the clearcut site were similar to those in an adjacent old-growth forested site. However, seasonal fluctuations were greater on the clearcut site. Higher summer respiration rates and lower winter rates observed on the clearcut relative to the old-growth site appeared to be driven more by temperature than by moisture. Clear-cutting also resulted in higher summer CWD and soil temperatures and lower winter temperatures compared with the old-growth site.


1998 ◽  
Vol 28 (5) ◽  
pp. 788-793 ◽  
Author(s):  
Jeff N Stone ◽  
Andy MacKinnon ◽  
John V Parminter ◽  
Ken P Lertzman

In 1929-1930, Stig Schenström and J.D. Curtis established an experiment to study thinning dynamics of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) on southern Vancouver Island, British Columbia. As a subcomponent of the experiment, the coarse woody debris (CWD) from the previous stand were mapped and the decay condition classified on five permanent plots. These scaled drawings and classifications were updated in 1945-1947 and 1995-1996. This unique 65-year period of CWD observation confirms that observations of CWD volume loss on Vancouver Island are similar to elsewhere in the Pacific Northwest. The simple exponential decay rate constant was 0.022 ·year-1 based on volume of primarily Douglas-fir on the five plots. The decay rate constant by large-end diameter was 0.067 ·year-1 for logs <= 20 cm, 0.056 ·year-1 for 21-40 cm, 0.021 ·year-1 for 41-80 cm, and 0.012 ·year-1 for logs > 80 cm.


Biotropica ◽  
2021 ◽  
Author(s):  
Ekaterina Shorohova ◽  
Ekaterina Kapitsa ◽  
Andrey Kuznetsov ◽  
Svetlana Kuznetsova ◽  
Valentin Lopes de Gerenuy ◽  
...  

2021 ◽  
pp. e01637
Author(s):  
Francesco Parisi ◽  
Michele Innangi ◽  
Roberto Tognetti ◽  
Fabio Lombardi ◽  
Gherardo Chirici ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document