scholarly journals The Intermediate Jacobian of the Cubic Threefold

1972 ◽  
Vol 95 (2) ◽  
pp. 281 ◽  
Author(s):  
C. Herbert Clemens ◽  
Phillip A. Griffiths
2010 ◽  
Vol 12 (01) ◽  
pp. 55-70 ◽  
Author(s):  
ANDREAS HÖRING

Let X be a smooth cubic threefold. We can associate two objects to X: the intermediate Jacobian J and the Fano surface F parametrizing lines on X. By a theorem of Clemens and Griffiths, the Fano surface can be embedded in the intermediate Jacobian and the cohomology class of its image is minimal. In this paper, we show that if X is generic, the Fano surface is the only surface of minimal class in J.


2018 ◽  
Vol 20 (07) ◽  
pp. 1750078
Author(s):  
Dimitri Markushevich ◽  
Xavier Roulleau

An arithmetic method of proving the irrationality of smooth projective 3-folds is described, using reduction modulo [Formula: see text]. It is illustrated by an application to a cubic threefold, for which the hypothesis that its intermediate Jacobian is isomorphic to the Jacobian of a curve is contradicted by reducing modulo 3 and counting points over appropriate extensions of [Formula: see text]. As a spin-off, it is shown that the 5-dimensional Prym varieties arising as intermediate Jacobians of certain cubic 3-folds have the maximal number of points over [Formula: see text] which attains Perret's and Weil's upper bounds.


Author(s):  
Florian Beck ◽  
Ron Donagi ◽  
Katrin Wendland

Abstract Folding of ADE-Dynkin diagrams according to graph automorphisms yields irreducible Dynkin diagrams of $\textrm{ABCDEFG}$-types. This folding procedure allows to trace back the properties of the corresponding simple Lie algebras or groups to those of $\textrm{ADE}$-type. In this article, we implement the techniques of folding by graph automorphisms for Hitchin integrable systems. We show that the fixed point loci of these automorphisms are isomorphic as algebraic integrable systems to the Hitchin systems of the folded groups away from singular fibers. The latter Hitchin systems are isomorphic to the intermediate Jacobian fibrations of Calabi–Yau orbifold stacks constructed by the 1st author. We construct simultaneous crepant resolutions of the associated singular quasi-projective Calabi–Yau three-folds and compare the resulting intermediate Jacobian fibrations to the corresponding Hitchin systems.


Author(s):  
Jeffrey D. Achter ◽  
Sebastian Casalaina-Martin ◽  
Charles Vial

AbstractFor a complex projective manifold, Walker has defined a regular homomorphism lifting Griffiths’ Abel–Jacobi map on algebraically trivial cycle classes to a complex abelian variety, which admits a finite homomorphism to the Griffiths intermediate Jacobian. Recently Suzuki gave an alternate, Hodge-theoretic, construction of this Walker Abel–Jacobi map. We provide a third construction based on a general lifting property for surjective regular homomorphisms, and prove that the Walker Abel–Jacobi map descends canonically to any field of definition of the complex projective manifold. In addition, we determine the image of the l-adic Bloch map restricted to algebraically trivial cycle classes in terms of the coniveau filtration.


2018 ◽  
Vol Volume 2 ◽  
Author(s):  
Jean-Louis Colliot-Thélène ◽  
Alena Pirutka

En combinant une m\'ethode de C. Voisin avec la descente galoisienne sur le groupe de Chow en codimension $2$, nous montrons que le troisi\`eme groupe de cohomologie non ramifi\'ee d'un solide cubique lisse d\'efini sur le corps des fonctions d'une courbe complexe est nul. Ceci implique que la conjecture de Hodge enti\`ere pour les classes de degr\'e 4 vaut pour les vari\'et\'es projectives et lisses de dimension 4 fibr\'ees en solides cubiques au-dessus d'une courbe, sans restriction sur les fibres singuli\`eres. --------------- We prove that the third unramified cohomology group of a smooth cubic threefold over the function field of a complex curve vanishes. For this, we combine a method of C. Voisin with Galois descent on the codimension $2$ Chow group. As a corollary, we show that the integral Hodge conjecture holds for degree $4$ classes on smooth projective fourfolds equipped with a fibration over a curve, the generic fibre of which is a smooth cubic threefold, with arbitrary singularities on the special fibres. Comment: in French


2010 ◽  
Vol 146 (2) ◽  
pp. 288-366 ◽  
Author(s):  
Mark Green ◽  
Phillip Griffiths ◽  
Matt Kerr

AbstractWe show that the limit of a one-parameter admissible normal function with no singularities lies in a non-classical sub-object of the limiting intermediate Jacobian. Using this, we construct a Hausdorff slit analytic space, with complex Lie group fibres, which ‘graphs’ such normal functions. For singular normal functions, an extension of the sub-object by a finite group leads to the Néron models. When the normal function comes from geometry, that is, a family of algebraic cycles on a semistably degenerating family of varieties, its limit may be interpreted via the Abel–Jacobi map on motivic cohomology of the singular fibre, hence via regulators onK-groups of its substrata. Two examples are worked out in detail, for families of 1-cycles on CY and abelian 3-folds, where this produces interesting arithmetic constraints on such limits. We also show how to compute the finite ‘singularity group’ in the geometric setting.


1979 ◽  
Vol 75 ◽  
pp. 95-119 ◽  
Author(s):  
Hiroshi Saito

The group of cycles of codimension one algebraically equivalent to zero of a nonsingular projective variety modulo rational equivalence forms an abelian variety, i.e., the Picard variety. To the group of cycles of dimension zero and of degree zero, there corresponds an abelian variety, the Albanese variety. Similarly, Weil, Lieberman and Griffiths have attached complex tori to the cycles of intermediate dimension in the classical case. The aim of this article is to give a purely algebraic construction of such “intermediate Jacobian varieties.”


Author(s):  
Kieran G O’Grady

Abstract Dedicato alla piccola Mia. For $X$ a hyperkähler manifold of Kummer type, let $J^3(X)$ be the intermediate Jacobian associated to $H^3(X)$. We prove that $H^2(X)$ can be embedded into $H^2(J^3(X))$. We show that there exists a natural smooth quadric $Q(X)$ in the projectivization of $H^3(X)$, such that Gauss–Manin parallel transport identifies the set of projectivizations of $H^{2,1}(Y)$, for $Y$ a deformation of $X$, with an open subset of a linear section of $Q^{+}(X)$, one component of the variety of maximal linear subspaces of $Q(X)$. We give a new proof of a result of Mongardi restricting the action of monodromy on $H^2(X)$. Lastly, we show that if $X$ is projective, then $J^3(X)$ is an abelian fourfold of Weil type.


Sign in / Sign up

Export Citation Format

Share Document