scholarly journals A system of axiomatic set theory. Part IV. General set theory

1942 ◽  
Vol 7 (4) ◽  
pp. 133-145 ◽  
Author(s):  
Paul Bernays

Our task in the treatment of general set theory will be to give a survey for the purpose of characterizing the different stages and the principal theorems with respect to their axiomatic requirements from the point of view of our system of axioms. The delimitation of “general set theory” which we have in view differs from that of Fraenkel's general set theory, and also from that of “standard logic” as understood by most logicians. It is adapted rather to the tendency of von Neumann's system of set theory—the von Neumann system having been the first in which the possibility appeared of separating the assumptions which are required for the conceptual formations from those which lead to the Cantor hierarchy of powers. Thus our intention is to obtain general set theory without use of the axioms V d, V c, VI.It will also be desirable to separate those proofs which can be made without the axiom of choice, and in doing this we shall have to use the axiom V*—i.e., the theorem of replacement taken as an axiom. From V*, as we saw in §4, we can immediately derive V a and V b as theorems, and also the theorem that a function whose domain is represented by a set is itself represented by a functional set; and on the other hand V* was found to be derivable from V a and V b in combination with the axiom of choice. (These statements on deducibility are of course all on the basis of the axioms I–III.)

1955 ◽  
Vol 20 (2) ◽  
pp. 140-140 ◽  
Author(s):  
Richard Montague

Mr. Shen Yuting, in this Journal, vol. 18, no. 2 (June, 1953), stated a new paradox of intuitive set-theory. This paradox involves what Mr. Yuting calls the class of all grounded classes, that is, the family of all classes a for which there is no infinite sequence b such that … ϵ bn ϵ … ϵ b2ϵb1 ϵ a.Now it is possible to state this paradox without employing any complex set-theoretical notions (like those of a natural number or an infinite sequence). For let a class x be called regular if and only if (k)(x ϵ k ⊃ (∃y)(y ϵ k · ~(∃z)(z ϵ k · z ϵ y))). Let Reg be the class of all regular classes. I shall show that Reg is neither regular nor non-regular.Suppose, on the one hand, that Reg is regular. Then Reg ϵ Reg. Now Reg ϵ ẑ(z = Reg). Therefore, since Reg is regular, there is a y such that y ϵ ẑ(z = Reg) · ~(∃z)(z ϵ z(z = Reg) · z ϵ y). Hence ~(∃z)(z ϵ ẑ(z = Reg) · z ϵ Reg). But there is a z (namely Reg) such that z ϵ ẑ(z = Reg) · z ϵ Reg.On the other hand, suppose that Reg is not regular. Then, for some k, Reg ϵ k · [1] (y)(y ϵ k ⊃ (∃z)(z ϵ k · z ϵ y)). It follows that, for some z, z ϵ k · z ϵ Reg. But this implies that (ϵy)(y ϵ k · ~(ϵw)(w ϵ k · w ϵ y)), which contradicts [1].It can easily be shown, with the aid of the axiom of choice, that the regular classes are just Mr. Yuting's grounded classes.


1945 ◽  
Vol 10 (1) ◽  
pp. 13-15 ◽  
Author(s):  
Raouf Doss

The present note is conceived as a sequel to Mostowki's paper, Über die Unabhängigkeit des Wohlordnungssatzes vom Ordnungsprinzip (which will be quoted as “M.”).In that paper Mostowski considers a system of axioms , very close to the system of axiomatic set theory of Bernays, but where the axiom of choice is not supposed to hold. Mostowski proves that the well-ordering theorem (Wohlordnungssatz) cannot be derived from the system plus the principle of simple ordering (Ordnungsprinzip).


1948 ◽  
Vol 13 (2) ◽  
pp. 65-79 ◽  
Author(s):  
Paul Bernays

Comparability of classes. Till now we tried to get along without the axioms Vc and Vd. We found that this is possible in number theory and analysis as well as in general set theory, even keeping in the main to the usual way of procedure.For the considerations of the present section application of the axioms Vc, Vd is essential. Our axiomatic basis here consists of the axioms I—III, V*, Vc, and Vd. From V*, as we know, Va and Vb are derivable. We here take axiom V* in order to separate the arguments requiring the axiom of choice from the others. Instead of the two axioms V* and Vc, as was observed in Part II, V** may be taken as well.


2021 ◽  
Vol 70 (2) ◽  
pp. 90-98
Author(s):  
Abigaël Alkema

Let l(u)⊃ |G|. A central problem in higher non-linear graph theoryis the construction of projective numbers. We show that Recent developments in axiomatic set theory [6] have raised the questionof whetherEis not dominated byl. On the other hand, the work in [6, 24] did not consider the hyper-real case.


2011 ◽  
Vol 4 (2) ◽  
pp. 186-204 ◽  
Author(s):  
OLIVER DEISER

We introduce a new simple first-order framework for theories whose objects are well-orderings (lists). A system ALT (axiomatic list theory) is presented and shown to be equiconsistent with ZFC (Zermelo Fraenkel Set Theory with the Axiom of Choice). The theory sheds new light on the power set axiom and on Gödel’s axiom of constructibility. In list theory there are strong arguments favoring Gödel’s axiom, while a bare analogon of the set theoretic power set axiom looks artificial. In fact, there is a natural and attractive modification of ALT where every object is constructible and countable. In order to substantiate our foundational interest in lists, we also compare sets and lists from the perspective of finite objects, arguing that lists are, from a certain point of view, conceptually simpler than sets.


2019 ◽  
Author(s):  
James A.D.W. Anderson

Transmathematics has the ambition to be a total mathematics. Many areas of the usual mathematics have been totalised in the transmathematics programme but the totalisations have all been carried out with the usual set theory, ZFC, Zermelo-Fraenkel set theory with the Axiom of Choice. This set theory is adequate but it is, itself, partial. Here we introduce a total set theory as a foundation for transmathematics. Surprisingly we adopt naive set theory. It is usually considered that the Russell Paradox demonstrates that naive set theory is incoherent because an apparently well-specified set, the Russell Set, cannot exist. We dissolve this paradox by showing that the specification of the Russell Set admits many unproblematical sets that do not contain themselves and, furthermore, unequivocally requires that the Russell Set does not contain itself because, were it to do so, that one element of the Russell Set would have contradictory membership. Having resolved the Russell Paradox, we go on to make the case that naive set theory is a paraconsistent logic. In order to demonstrate the sufficiency of naive set theory, as a basis for transmathematics, we introduce the transordinals. The von Neumann ordinals supply the usual ordinals, the simplest unordered set is identical to transreal nullity, and the Russell Set, excluding nullity, is the greatest ordinal, identical to transreal infinity. The generalisation of the transordinals to the whole of established transmathematics is already known. As naive set theory contains all other set theories, it provides a backwardly compatible foundation for the whole of mathematics.


1987 ◽  
Vol 52 (2) ◽  
pp. 374-387 ◽  
Author(s):  
T. E. Forster

We shall be concerned here with weak axiomatic systems of set theory with a universal set. The language in which they are expressed is that of set theory—two primitive predicates, = and ϵ, and no function symbols (though some function symbols will be introduced by definitional abbreviation). All the theories will have stratified axioms only, and they will all have Ext (extensionality: (∀x)(∀y)(x = y· ↔ ·(∀z)(z ϵ x ↔ z ϵ y))). In fact, in addition to extensionality, they have only axioms saying that the universe is closed under certain set-theoretic operations, viz. all of the formand these will always include singleton, i.e., ι′x exists if x does (the iota notation for singleton, due to Russell and Whitehead, is used here to avoid confusion with {x: Φ}, set abstraction), and also x ∪ y, x ∩ y and − x (the complement of x). The system with these axioms is called NF2 in the literature (see [F]). The other axioms we consider will be those giving ⋃x, ⋂x, {y: y ⊆x} and {y: x ⊆ y}. We will frequently have occasion to bear in mind that 〈 V, ⊆ 〉 is a Boolean algebra in any theory extending NF2. There is no use of the axiom of choice at any point in this paper. Since the systems with which we will be concerned exhibit this feature of having, in addition to extensionality, only axioms stating that V is closed under certain operations, we will be very interested in terms of the theories in question. A T-term, for T such a theory, is a thing (with no free variables) built up from V or ∧ by means of the T-operations, which are of course the operations that the axioms of T say the universe is closed under.


1978 ◽  
Vol 43 (4) ◽  
pp. 673-684 ◽  
Author(s):  
Paul E. Howard ◽  
Arthur L. Rubin ◽  
Jean E. Rubin

AbstractLet NBG be von Neumann-Bemays-Gödel set theory without the axiom of choice and let NBGA be the modification which allows atoms. In this paper we consider some of the well-known class or global forms of the wellordering theorem, the axiom of choice, and maximal principles which are known to be equivalent in NBG and show they are not equivalent in NBGA.


1959 ◽  
Vol 24 (2) ◽  
pp. 154-166 ◽  
Author(s):  
Azriel Lévy

Ackermann introduced in [1] a system of axiomatic set theory. The quantifiers of this set theory range over a universe of objects which we call classes. Among the classes we distinguish the sets. Here we shall show that, in some sense, all the theorems of Ackermann's set theory can be proved in Zermelo-Fraenkel's set theory. We shall also show that, on the other hand, it is possible to prove in Ackermann's set theory very strong theorems of the Zermelo-Fraenkel set theory.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The link between the high-order metaphysics and abstractions, on the one hand, and choice in the foundation of set theory, on the other hand, can distinguish unambiguously the “good” principles of abstraction from the “bad” ones and thus resolve the “bad company problem” as to set theory. Thus it implies correspondingly a more precise definition of the relation between the axiom of choice and “all company” of axioms in set theory concerning directly or indirectly abstraction: the principle of abstraction, axiom of comprehension, axiom scheme of specification, axiom scheme of separation, subset axiom scheme, axiom scheme of replacement, axiom of unrestricted comprehension, axiom of extensionality, etc.


Sign in / Sign up

Export Citation Format

Share Document