Sets constructible from sequences of ultrafilters

1974 ◽  
Vol 39 (1) ◽  
pp. 57-66 ◽  
Author(s):  
William J. Mitchell

In [4], Kunen used iterated ultrapowers to show that ifUis a normalκ-complete nontrivial ultrafilter on a cardinalκthenL[U], the class of sets constructive fromU, has only the ultrafilterU∩L[U] and this ultrafilter depends only onκ. In this paper we extend Kunen's methods to arbitrary sequencesUof ultrafilters (provided that they fulfill a coherency condition) and obtain generalizations of these results (§3). In particular we answer Problem 1 of Kunen and Paris [5] which asks whether the number of ultrafilters onκcan be intermediate between 1 and 22κ. If there is a normalκ-complete ultrafilterUonκsuch that {α <κ: α is measurable} ∈Uthen there is an inner model with exactly two normal ultrafilters onκ, and ifκis super-compact then there are inner models havingκ+ +,κ+or any cardinal less than or equal toκnormal ultrafilters (§4).These methods also show that several properties ofLwhich had been shown to hold forL[U] also hold forL[U]: using an idea of Silver we show that inL[U] the generalized continuum hypothesis is true, there is a Souslin tree, and there is awell-ordering of the reals. In addition we generalize a result of Kunen to characterize the countaby complete ultrafilters ofL[U].

1972 ◽  
Vol 37 (3) ◽  
pp. 569-571
Author(s):  
Andreas Blass

The method of inner models, used by Gödel to prove the (relative) consistency of the axiom of choice and the generalized continuum hypothesis [2], cannot be used to prove the (relative) consistency of any statement which contradicts the axiom of constructibility (V = L). A more precise statement of this well-known fact is:(*)For any formula θ(x) of the language of ZF, there is an axiom α of the theory ZF + V ≠ L such that the relativization α(θ) is not a theorem of ZF.On p. 108 of [1], Cohen gives a proof of (*) in ZF assuming the existence of a standard model of ZF, and he indicates that this assumption can be avoided. However, (*) is not a theorem of ZF (unless ZF is inconsistent), because (*) trivially implies the consistency of ZF. What assumptions are needed to prove (*)? We know that the existence of a standard model implies (*) which, in turn, implies the consistency of ZF. Is either implication reversible?From our main result, it will follow that, if the converse of the first implication is provable in ZF, then ZF has no standard model, and if the converse of the second implication is provable in ZF, then so is the inconsistency of ZF. Thus, it is quite improbable that either converse is provable in ZF.


1951 ◽  
Vol 16 (3) ◽  
pp. 161-190 ◽  
Author(s):  
J. C. Shepherdson

One of the standard ways of proving the consistency of additional hypotheses with the basic axioms of an axiom system is by the construction of what may be described as ‘inner models.’ By starting with a domain of individuals assumed to satisfy the basic axioms an inner model is constructed whose domain of individuals is a certain subset of the original individual domain. If such an inner model can be constructed which satisfies not only the basic axioms but also the particular additional hypothesis under consideration, then this affords a proof that if the basic axiom system is consistent then so is the system obtained by adding to this system the new hypothesis. This method has been applied to axiom systems for set theory by many authors, including v. Neumann (4), Mostowski (5), and more recently Gödel (1), who has shown by this method that if the basic axioms of a certain axiomatic system of set theory are consistent then so is the system obtained by adding to these axioms a strong form of the axiom of choice and the generalised continuum hypothesis. Having been shown in this striking way the power of this method it is natural to inquire whether it has any limitations or whether by the construction of a sufficiently ingenious inner model one might hope to decide other outstanding consistency questions, such as the consistency of the negations of the axiom of choice and continuum hypothesis. In this and two following papers we prove some general theorems concerning inner models for a certain axiomatic system of set theory which lead to the result that as far as a fairly large family of inner models are concerned this method of proving consistency has been exhausted, that no essentially new consistency results can be obtained by the use of this kind of model.


2007 ◽  
Vol 72 (4) ◽  
pp. 1299-1317 ◽  
Author(s):  
Jonas Reitz

AbstractA new axiom is proposed, the Ground Axiom, asserting that the universe is not a nontrivial set forcing extension of any inner model. The Ground Axiom is first-order expressible, and any model of ZFC has a class forcing extension which satisfies it. The Ground Axiom is independent of many well-known set-theoretic assertions including the Generalized Continuum Hypothesis, the assertion V=HOD that every set is ordinal definable, and the existence of measurable and supercompact cardinals. The related Bedrock Axiom, asserting that the universe is a set forcing extension of a model satisfying the Ground Axiom, is also first-order expressible, and its negation is consistent.


2020 ◽  
pp. 2150012
Author(s):  
Juliette Kennedy ◽  
Menachem Magidor ◽  
Jouko Väänänen

If we replace first-order logic by second-order logic in the original definition of Gödel’s inner model [Formula: see text], we obtain the inner model of hereditarily ordinal definable (HOD) sets [33]. In this paper, we consider inner models that arise if we replace first-order logic by a logic that has some, but not all, of the strength of second-order logic. Typical examples are the extensions of first-order logic by generalized quantifiers, such as the Magidor–Malitz quantifier [24], the cofinality quantifier [35], or stationary logic [6]. Our first set of results show that both [Formula: see text] and HOD manifest some amount of formalism freeness in the sense that they are not very sensitive to the choice of the underlying logic. Our second set of results shows that the cofinality quantifier gives rise to a new robust inner model between [Formula: see text] and HOD. We show, among other things, that assuming a proper class of Woodin cardinals the regular cardinals [Formula: see text] of [Formula: see text] are weakly compact in the inner model arising from the cofinality quantifier and the theory of that model is (set) forcing absolute and independent of the cofinality in question. We do not know whether this model satisfies the Continuum Hypothesis, assuming large cardinals, but we can show, assuming three Woodin cardinals and a measurable above them, that if the construction is relativized to a real, then on a cone of reals, the Continuum Hypothesis is true in the relativized model.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Mirna Džamonja

We develop the framework ofnatural spacesto study isomorphic embeddings of Banach spaces. We then use it to show that a sufficient failure of the generalized continuum hypothesis implies that the universality number of Banach spaces of a given density under a certain kind of positive embedding (very positive embedding) is high. An example of a very positive embedding is a positive onto embedding betweenC(K)andCLfor 0-dimensionalKandLsuch that the following requirement holds for allh≠0andf≥0inC(K): if0≤Th≤Tf, then there are constantsa≠0andbwith0≤a·h+b≤fanda·h+b≠0.


2016 ◽  
Vol 81 (3) ◽  
pp. 972-996 ◽  
Author(s):  
GUNTER FUCHS ◽  
RALF SCHINDLER

AbstractOne of the basic concepts of set theoretic geology is the mantle of a model of set theory V: it is the intersection of all grounds of V, that is, of all inner models M of V such that V is a set-forcing extension of M. The main theme of the present paper is to identify situations in which the mantle turns out to be a fine structural extender model. The first main result is that this is the case when the universe is constructible from a set and there is an inner model with a Woodin cardinal. The second situation like that arises if L[E] is an extender model that is iterable in V but not internally iterable, as guided by P-constructions, L[E] has no strong cardinal, and the extender sequence E is ordinal definable in L[E] and its forcing extensions by collapsing a cutpoint to ω (in an appropriate sense). The third main result concerns the Solid Core of a model of set theory. This is the union of all sets that are constructible from a set of ordinals that cannot be added by set-forcing to an inner model. The main result here is that if there is an inner model with a Woodin cardinal, then the solid core is a fine-structural extender model.


Sign in / Sign up

Export Citation Format

Share Document