Complete types and the natural numbers

1973 ◽  
Vol 38 (3) ◽  
pp. 413-415
Author(s):  
Julia F. Knight

In this paper it is shown that, for any complete type Σ omitted in the structure , or in any expansion of having only countably many relations and operations, there is a proper elementary extension of (or of ) which omits Σ. This result (which was announced in [2]) is used to answer a question of Malitz on complete -sentences. The result holds also for countable families of types.A type is a countable set of formulas with just the variable υ free. A structure is said to omit a type Σ if no element of satisfies all of the formulas of Σ. For example, omits the type Σω = {υ ≠ n: n ∈ ω}, since n fails to satisfy υ ≠ n. (Here n is the constant symbol standing for n.)A type Σ is said to be complete with respect to a theory T if the set of sentences T ∪ Σ(e) generates a complete theory, where Σ(e) is the result of replacing υ by the new constant e in all of the formulas of Σ. The type Σω is clearly not complete with respect to Th(). (For any structure Th(), Th() is the set of all sentences true in .)

1973 ◽  
Vol 38 (3) ◽  
pp. 460-470 ◽  
Author(s):  
John Gregory

Let A be a countable admissible set (as defined in [1], [3]). The language LA consists of all infinitary finite-quantifier formulas (identified with sets, as in [1]) that are elements of A. Notationally, LA = A ∩ Lω1ω. Then LA is a countable subset of Lω1ω, the language of all infinitary finite-quantifier formulas with all conjunctions countable. The set is the set of Lω1ω sentences defined in 2.2 below. The following theorem characterizes those A-Σ1 sets Φ of LA sentences that have uncountable models.Main Theorem (3.1.). If Φ is an A-Σ1set of LA sentences, then the following are equivalent:(a) Φ has an uncountable model,(b) Φ has a model with a proper LA-elementary extension,(c) for every , ⋀Φ → C is not valid.This theorem was announced in [2] and is proved in §§3, 4, 5. Makkai's earlier [4, Theorem 1] implies that, if Φ determines countable structure up to Lω1ω-elementary equivalence, then (a) is equivalent to (c′) for all , ⋀Φ → C is not valid.The requirement in 3.1 that Φ is A-Σ1 is essential when the set ω of all natural numbers is an element of A. For by the example of [2], then there is a set Φ LA sentences such that (b) holds and (a) fails; it is easier to show that, if ω ϵ A, there is a set Φ of LA sentences such that (c) holds and (b) fails.


2018 ◽  
Vol 18 (02) ◽  
pp. 1850006 ◽  
Author(s):  
Ilijas Farah ◽  
Menachem Magidor

This paper is about omitting types in logic of metric structures introduced by Ben Yaacov, Berenstein, Henson and Usvyatsov. While a complete type is omissible in some model of a countable complete theory if and only if it is not principal, this is not true for the incomplete types by a result of Ben Yaacov. We prove that there is no simple test for determining whether a type is omissible in a model of a theory [Formula: see text] in a countable language. More precisely, we find a theory in a countable language such that the set of types omissible in some of its models is a complete [Formula: see text] set and a complete theory in a countable language such that the set of types omissible in some of its models is a complete [Formula: see text] set. Two more unexpected examples are given: (i) a complete theory [Formula: see text] and a countable set of types such that each of its finite sets is jointly omissible in a model of [Formula: see text], but the whole set is not and (ii) a complete theory and two types that are separately omissible, but not jointly omissible, in its models.


1972 ◽  
Vol 37 (3) ◽  
pp. 562-568
Author(s):  
Andreas Blass

Consider the Löwenheim-Skolem theorem in the form: If a theory in a countable first-order language has a model, then it has a countable model. As is well known, this theorem becomes false if one omits the hypothesis that the language be countable, for one then has the following trivial counterexample.Example 1. Let the language have uncountably many constants, and let the theory say that they are unequal.To motivate some of our future definitions and to introduce some notation, we present another, less trivial, counterexample.Example 2. Let L0 be the language whose n-place predicate (resp. function) symbols are all the n-place predicates (resp. functions) on the set ω of natural numbers. Let be the standard model for L0; we use the usual notation Th() for its complete theory. Add to L0 a new constant e, and add to Th() an axiom schema saying that e is infinite. By the compactness theorem, the resulting theory T has models. However, none of its models are countable. Although this fact is well known, we sketch a proof in order to refer to it later.By [5, p. 81], there is a family {Aα ∣ < α < c} of infinite subsets of ω, the intersection of any two of which is finite.


1989 ◽  
Vol 54 (1) ◽  
pp. 264-270 ◽  
Author(s):  
Terrence Millar

An Ehrenfeucht theory is a complete first order theory with exactly n countable models up to isomorphism, 1 < n < ω. Numerous results have emerged regarding these theories ([1]–[15]). A general question in model theory is whether or not the number of countable models of a complete theory can be different than the number of countable models of a complete consistent extension of the theory by finitely many constant symbols. Examples are known of Ehrenfeucht theories that have complete extensions by finitely many constant symbols such that the extensions fail to be Ehrenfeucht ([4], [8], [13]). These examples are easily modified to allow finite increases in the number of countable models.This paper contains examples in the other direction—complete theories that have consistent extensions by finitely many constant symbols such that the extensions have fewer countable models. This answers affirmatively a question raised by, among others, Peretyat'kin [8]. The first example will be an Ehrenfeucht theory with exactly four countable models with an extension by a constant symbol that has only three countable models. The second example will be a complete theory that is not Ehrenfeucht, but which has an extension by a constant symbol that is Ehrenfeucht. The notational conventions for this paper are standard.Peretyat'kin introduced the theory of a dense binary branching tree with a meet operator [7]. Dense ω-branching trees have also proven useful [5], [11]. Both of the Theories that will be constructed make use of dense ω-branching trees.


2019 ◽  
Author(s):  
Muhammad Ali

This paper proposes a Gadenkan experiment named “Observer’s Dilemma”, to investigate the probabilistic nature of observable phenomena. It has been reasoned that probabilistic nature in, otherwise uniquely deterministic phenomena can be introduced due to lack of information of underlying governing laws. Through theoretical consequences of the experiment, concepts of ‘Absolute Complete’ and ‘Observably Complete” theories have been introduced. Furthermore, nature of reality being ‘absolute’ and ‘observable’ have been discussed along with the possibility of multiple realities being true for observer. In addition, certain aspects of quantum mechanics have been interpreted. It has been argued that quantum mechanics is an ‘observably complete’ theory and its nature is to give probabilistic predictions. Lastly, it has been argued that “Everettian - Many world” interpretation of quantum mechanics is very real and true in the framework of ‘observable nature of reality’, for humans.


Author(s):  
Tyron Goldschmidt

This chapter considers Plantinga’s argument from numbers for the existence of God. Plantinga sees divine psychologism as having advantages over both human psychologism and Platonism. The chapter begins with Plantinga’s description of the argument, including the relation of numbers to any divine attribute. It then argues that human psychologism can be ruled out completely. However, what rules it out might rule out divine psychologism too. It also argues that the main problem with Platonism might also be a problem with divine psychologism. However, it will, at the least, be less of a problem. In any case, there are alternative, possibly viable views about the nature of numbers that have not been touched by Plantinga’s argument. In addition, the chapter touches on the argument from properties, and its relation to the argument from numbers.


Author(s):  
Jonathan Dancy

This chapter considers how to locate moral reasoning in terms of the structures that have emerged so far. It does not attempt to write a complete theory of moral thought. Its main purpose is rather to reassure us that moral reasoning—which might seem to be somehow both practical and theoretical at once—can be perfectly well handled using the tools developed in previous chapters. It also considers the question how we are to explain practical reasoning—and practical reasons more generally—by contrast with the explanation of theoretical reasons and reasoning offered in Chapter 4. This leads us to the first appearance of the Primacy of the Practical. The second appearance concerns reasons to intend.


Author(s):  
Øystein Linnebo

How are the natural numbers individuated? That is, what is our most basic way of singling out a natural number for reference in language or in thought? According to Frege and many of his followers, the natural numbers are cardinal numbers, individuated by the cardinalities of the collections that they number. Another answer regards the natural numbers as ordinal numbers, individuated by their positions in the natural number sequence. Some reasons to favor the second answer are presented. This answer is therefore developed in more detail, involving a form of abstraction on numerals. Based on this answer, a justification for the axioms of Dedekind–Peano arithmetic is developed.


2021 ◽  
Vol 31 (1) ◽  
pp. 51-60
Author(s):  
Arsen L. Yakymiv

Abstract Dedicated to the memory of Alexander Ivanovich Pavlov. We consider the set of n-permutations with cycle lengths belonging to some fixed set A of natural numbers (so-called A-permutations). Let random permutation τ n be uniformly distributed on this set. For some class of sets A we find the asymptotics with remainder term for moments of total cycle number of τ n .


Sign in / Sign up

Export Citation Format

Share Document