An introduction to forking

1979 ◽  
Vol 44 (3) ◽  
pp. 330-350 ◽  
Author(s):  
Daniel Lascar ◽  
Bruno Poizat

The notion of forking has been introduced by Shelah, and a full treatment of it will appear in his book on stability [S1]. The principal aim of this paper is to show that it is an easy and natural notion.Consider some well-known examples of ℵ0-stable theories: vector spaces over Q, algebraically closed fields, differentially closed fields of characteristic 0; in each of these cases, we have a natural notion of independence: linear, algebraic and differential independence respectively. Forking gives a generalization of these notions. More precisely, if are subsets of some model and c a point of this model, the fact that the type of c over does not fork over means that there are no more relations of dependence between c and than there already existed between c and . In the case of the vector spaces, this means that c is in the space generated by only if it is already in the space generated by . In the case of differentially closed fields, this means that the minimal differential equations of c with coefficient respectively in and have the same order. Of course, these notions of dependence are essential for the study of the above mentioned structures. Forking is no less important for stable theories. A glance at Shelah's book will convince the reader that this is the case.What we have to do is the following. Assuming T stable and given and p a type on , we want to distinguish among the extensions of p to some of them that we shall call the nonforking extensions of p.

2020 ◽  
Vol 375 ◽  
pp. 107342
Author(s):  
Alexandru Buium ◽  
Lance Edward Miller

1979 ◽  
Vol 44 (3) ◽  
pp. 383-402 ◽  
Author(s):  
G. Metakides ◽  
J.B. Remmel

In [6], Metakides and Nerode introduced the study of the lattice of recursively enumerable substructures of a recursively presented model as a means to understand the recursive content of certain algebraic constructions. For example, the lattice of recursively enumerable subspaces,, of a recursively presented vector spaceV∞has been studied by Kalantari, Metakides and Nerode, Retzlaff, Remmel and Shore. Similar studies have been done by Remmel [12], [13] for Boolean algebras and by Metakides and Nerode [9] for algebraically closed fields. In all of these models, the algebraic closure of a set is nontrivial. (The formal definition of the algebraic closure of a setS, denoted cl(S), is given in §1, however in vector spaces, cl(S) is just the subspace generated byS, in Boolean algebras, cl(S) is just the subalgebra generated byS, and in algebraically closed fields, cl(S) is just the algebraically closed subfield generated byS.)In this paper, we give a general model theoretic setting (whose precise definition will be given in §1) in which we are able to give constructions which generalize many of the constructions of classical recursion theory. One of the main features of the modelswhich we study is that the algebraic closure of setis just itself, i.e., cl(S) = S. Examples of such models include the natural numbers under equality 〈N, = 〉, the rational numbers under the usual ordering 〈Q, ≤〉, and a large class ofn-dimensional partial orderings.


2007 ◽  
Vol 72 (3) ◽  
pp. 1031-1040 ◽  
Author(s):  
J. Chisholm ◽  
J. F. Knight ◽  
S. Miller

AbstractHere we prove that if T and T′ are strongly minimal theories, where T′ satisfies a certain property related to triviality and T does not, and T′ is model complete, then there is no computable embedding of Mod(T) into Mod(T′). Using this, we answer a question from [4], showing that there is no computable embedding of VS into ZS, where VS is the class of infinite vector spaces over ℚ, and ZS is the class of models of Th(ℤ, S). Similarly, we show that there is no computable embedding of ACF into ZS, where ACF is the class of algebraically closed fields of characteristic 0.


1992 ◽  
Vol 57 (3) ◽  
pp. 892-911 ◽  
Author(s):  
Alex Feldman

In §3 we construct a universal, ℵ0-categorical recursively presented partial order with greatest lower bound operator. This gives us the unique structure which embeds every countable lower semilattice. In §§5 and 6 we investigate the recursive and recursively enumerable substructures of this structure, in particular finding a suitable definition for the simple-maximal hierarchy and giving an example of an infinite recursively enumerable substructure which does not contain any infinite recursive substructure.The idea of looking at the lattice of recursively enumerable substructures of some recursive algebraic structure was introduced by Metakides and Nerode in [5], and since then many different kinds of algebraic structures have been studied in this way, including vector spaces, Boolean algebras, groups, algebraically closed fields, and equivalence relations. Since different algebraic structures have different recursion theoretic properties, one natural question is whether an algebraic structure with relatively little structure (such as a partial order or an equivalence relation) exhibits behavior more like classical recursion theory than one with more structure (such as vector spaces or algebraically closed fields).In [6] and [7], Metakides and Remmel studied recursion theory on orderings, and, as they point out in [6], orderings differ from most other algebraic structures in that the algebraic closure operation on orderings is trivial; but this does not present a problem for them, given the questions they explore. Moreover, they take an approach of proving general theorems which can then be applied to specific orderings. Our tack is different, although also well-established (see, for example, [3]), in which a “largest” structure is defined (in §3) which corresponds to the natural numbers in classical recursion theory. In order to distinguish substructures from subsets, a function symbol is added, namely greatest lower bound. The greatest lower bound function is fundamental to the study of orderings and occurs naturally in many of them, and thus is an appropriate addition to the theory of orderings. In §4 we redefine the concepts of simple and maximal in a manner appropriate to this structure, and prove several existence theorems.


2020 ◽  
Vol 70 (2) ◽  
pp. 401-416
Author(s):  
Hana Machů

Abstract If in the right-hand sides of given differential equations occur discontinuities in the state variables, then the natural notion of a solution is the one in the sense of Filippov. In our paper, we will consider this type of solutions for vector Dirichlet problems. The obtained theorems deal with the existence and localization of Filippov solutions, under effective growth restrictions. Two illustrative examples are supplied.


2004 ◽  
Vol 271 (2) ◽  
pp. 627-637 ◽  
Author(s):  
Zoé Chatzidakis ◽  
Ehud Hrushovski

Author(s):  
D. F. Holt ◽  
N. Spaltenstein

AbstractThe classification of the nilpotent orbits in the Lie algebra of a reductive algebraic group (over an algebraically closed field) is given in all the cases where it was not previously known (E7 and E8 in bad characteristic, F4 in characteristic 3). The paper exploits the tight relation with the corresponding situation over a finite field. A computer is used to study this case for suitable choices of the finite field.


2017 ◽  
Vol 153 (8) ◽  
pp. 1706-1746
Author(s):  
Michael Groechenig

A result of André Weil allows one to describe rank $n$ vector bundles on a smooth complete algebraic curve up to isomorphism via a double quotient of the set $\text{GL}_{n}(\mathbb{A})$ of regular matrices over the ring of adèles (over algebraically closed fields, this result is also known to extend to $G$-torsors for a reductive algebraic group $G$). In the present paper we develop analogous adelic descriptions for vector and principal bundles on arbitrary Noetherian schemes, by proving an adelic descent theorem for perfect complexes. We show that for Beilinson’s co-simplicial ring of adèles $\mathbb{A}_{X}^{\bullet }$, we have an equivalence $\mathsf{Perf}(X)\simeq |\mathsf{Perf}(\mathbb{A}_{X}^{\bullet })|$ between perfect complexes on $X$ and cartesian perfect complexes for $\mathbb{A}_{X}^{\bullet }$. Using the Tannakian formalism for symmetric monoidal $\infty$-categories, we conclude that a Noetherian scheme can be reconstructed from the co-simplicial ring of adèles. We view this statement as a scheme-theoretic analogue of Gelfand–Naimark’s reconstruction theorem for locally compact topological spaces from their ring of continuous functions. Several results for categories of perfect complexes over (a strong form of) flasque sheaves of algebras are established, which might be of independent interest.


Sign in / Sign up

Export Citation Format

Share Document