scholarly journals Alfred Tarski and undecidable theories

1986 ◽  
Vol 51 (4) ◽  
pp. 890-898 ◽  
Author(s):  
George F. McNulty

Alfred Tarski identified decidability within various logical formalisms as one of the principal themes for investigation in mathematical logic. This is evident already in the focus of the seminar he organized in Warsaw in 1926. Over the ensuing fifty-five years, Tarski put forth a steady stream of theorems concerning decidability, many with far-reaching consequences. Just as the work of the 1926 seminar reflected Tarski's profound early interest in decidability, so does his last work, A formalization of set theory without variables, a monograph written in collaboration with S. Givant [8−m]. An account of the Warsaw seminar can be found in Vaught [1986].Tarski's work on decidability falls into four broad areas: elementary theories which are decidable, elementary theories which are undecidable, the undecidability of theories of various restricted kinds, and what might be called decision problems of the second degree. An account of Tarski's work with decidable elementary theories can be found in Doner and van den Dries [1987] and in Monk [1986] (for Boolean algebras). Vaught [1986] discusses Tarski's contributions to the method of quantifier elimination. Our principal concern here is Tarski's work in the remaining three areas.We will say that a set of elementary sentences is a theory provided it is closed with respect to logical consequence and we will say that a theory is decidable or undecidable depending on whether it is a recursive or nonrecursive set. The notion of a theory may be restricted in a number of interesting ways. For example, an equational theory is just the set of all universal sentences, belonging to some elementary theory, whose quantifier-free parts are equations between terms.


2010 ◽  
Vol 62 (3) ◽  
pp. 481-519 ◽  
Author(s):  
Montserrat Casals-Ruiz ◽  
Ilya V. Kazachkov

AbstractThe first main result of the paper is a criterion for a partially commutative group 𝔾 to be a domain. It allows us to reduce the study of algebraic sets over 𝔾 to the study of irreducible algebraic sets, and reduce the elementary theory of 𝔾 (of a coordinate group over 𝔾) to the elementary theories of the direct factors of 𝔾 (to the elementary theory of coordinate groups of irreducible algebraic sets).Then we establish normal forms for quantifier-free formulas over a non-abelian directly indecomposable partially commutative group ℍ. Analogously to the case of free groups, we introduce the notion of a generalised equation and prove that the positive theory of ℍ has quantifier elimination and that arbitrary first-order formulas lift from ℍ to ℍ * F, where F is a free group of finite rank. As a consequence, the positive theory of an arbitrary partially commutative group is decidable.



1982 ◽  
Vol 47 (4) ◽  
pp. 739-754
Author(s):  
C.P. Farrington

This paper is devoted to the proof of the following theorem.Theorem. Let M be a countable standard transitive model of ZF + V = L, and let ℒ Є M be a wellfounded lattice in M, with top and bottom. Let ∣ℒ∣M = λ, and suppose κ ≥ λ is a regular cardinal in M. Then there is a generic extension N of M such that(i) N and M have the same cardinals, and κN ⊂ M;(ii) the c-degrees of sets of ordinals of N form a pattern isomorphic to ℒ;(iii) if A ⊂ On and A Є N, there is B Є P(κ+)N such that L(A) = L(B).The proof proceeds by forcing with Souslin trees, and relies heavily on techniques developed by Jech. In [5] he uses these techniques to construct simple Boolean algebras in L, and in [6] he uses them to construct a model of set theory whose c-degrees have orderlype 1 + ω*.The proof also draws on ideas of Adamovicz. In [1]–[3] she obtains consistency results concerning the possible patterns of c-degrees of sets of ordinals using perfect set forcing and symmetric models. These methods have the advantage of yielding real degrees, but involve greater combinatorial complexity, in particular the use of ‘sequential representations’ of lattices.The advantage of the approach using Souslin trees is twofold: first, we can make use of ready-made combinatorial principles which hold in L, and secondly, the notion of genericity over a Souslin tree is particularly simple.



10.1142/12456 ◽  
2022 ◽  
Author(s):  
Douglas Cenzer ◽  
Jean Larson ◽  
Christopher Porter ◽  
Jindrich Zapletal


Author(s):  
John Stillwell

This chapter prepares the reader's mind for reverse mathematics. As its name suggests, reverse mathematics seeks not theorems but the right axioms to prove theorems already known. Reverse mathematics began as a technical field of mathematical logic, but its main ideas have precedents in the ancient field of geometry and the early twentieth-century field of set theory. In geometry, the parallel axiom is the right axiom to prove many theorems of Euclidean geometry, such as the Pythagorean theorem. Set theory offers a more modern example: base theory called ZF, a theorem that ZF cannot prove (the well-ordering theorem) and the “right axiom” for proving it—the axiom of choice. From these and similar examples one can guess at a base theory for analysis, and the “right axioms” for proving some of its well-known theorems.



1950 ◽  
Vol 15 (2) ◽  
pp. 103-112 ◽  
Author(s):  
Hao Wang

In mathematics, when we want to introduce classes which fulfill certain conditions, we usually prove beforehand that classes fulfilling such conditions do exist, and that such classes are uniquely determined by the conditions. The statements which state such unicity and existence of classes are in mathematical logic consequences of the principles of extensionality and class existence. In order to illustrate how these principles enable us to introduce classes into systems of mathematical logic, let us consider the manner in which Gödel introduces classes in his book on set theory.For instance, before introducing the definition of the non-ordered pair of two classesGödel puts down as its justification the following two axioms:By A4, for every two classesyandzthere exists at least one non-ordered pairwof them; and by A3,wis uniquely determined in A4.



10.1142/11324 ◽  
2020 ◽  
Author(s):  
Douglas Cenzer ◽  
Jean Larson ◽  
Christopher Porter ◽  
Jindrich Zapletal




Sign in / Sign up

Export Citation Format

Share Document