On Cantor-Bendixson spectra containing (1,1). II

1985 ◽  
Vol 50 (3) ◽  
pp. 611-618 ◽  
Author(s):  
Annalisa Marcja ◽  
Carlo Toffalori

Let T be a (countable, complete, quantifier eliminable) ω-stable theory; an analysis of T, and consequently a classification of ω-stable theories, can be done by looking at the Boolean algebras B(M) of definable subsets of its countable models M (as usual, we often confuse a definable subset of M with the class of formulas defining it). If M ⊨ T, ∣M∣ = ℵ0, then, for every LM-formula ϕ(v) and for every ordinal α, we define a relation(CB = Cantor-Bendixson, of course) by induction on α:CB-rank ϕ(v) ≥ 0 if ϕ(M) ≠ ∅CB-rank ϕ(v) ≥ λ for λ a limit ordinal, if CB-rank ϕ(v) ≥ for all v < λ;CB-rank ϕ(v)≥ α + 1 if, for all n ∈ ω,(*) there are LM-formulas ϕ0(v), …, ϕn − 1(v) such thatIt is well known that the ω-stability of T implies that, for every consistent LM-formula ϕ(v), there is exactly one ordinal α < ω1 such that CB-rank ϕ(v) ≥ α and CB-rank ϕ(v)≱α + 1. Therefore we define:CB-rank ϕ(v) = αCB-degree ϕ(v) = d if d is the maximal n ∈ ω satisfying (*); andCB-type ϕ(v) = (α, d).

2019 ◽  
Vol 84 (3) ◽  
pp. 1007-1019
Author(s):  
DANUL K. GUNATILLEKA

AbstractWe continue the study of the theories of Baldwin–Shi hypergraphs from [5]. Restricting our attention to when the rank δ is rational valued, we show that each countable model of the theory of a given Baldwin–Shi hypergraph is isomorphic to a generic structure built from some suitable subclass of the original class used in the construction. We introduce a notion of dimension for a model and show that there is a an elementary chain $\left\{ {\mathfrak{M}_\beta :\beta \leqslant \omega } \right\}$ of countable models of the theory of a fixed Baldwin–Shi hypergraph with $\mathfrak{M}_\beta \preccurlyeq \mathfrak{M}_\gamma $ if and only if the dimension of $\mathfrak{M}_\beta $ is at most the dimension of $\mathfrak{M}_\gamma $ and that each countable model is isomorphic to some $\mathfrak{M}_\beta $. We also study the regular types that appear in these theories and show that the dimension of a model is determined by a particular regular type. Further, drawing on a large body of work, we use these structures to give an example of a pseudofinite, ω-stable theory with a nonlocally modular regular type, answering a question of Pillay in [11].


1988 ◽  
Vol 53 (2) ◽  
pp. 625-635 ◽  
Author(s):  
Steven Buechler

AbstractThe main result is Vaught's conjecture for weakly minimal, locally modular and non-ω-stable theories. The more general results yielding this are the following.Theorem A. Suppose that T is a small unidimensional theory and D is a weakly minimal set, definable over the finite set B. Then for all finite A ⊂ D there are only finitely many nonalgebraic strong types over B realized in acl(A) ∩ D.Theorem B. Suppose that T is a small, unidimensional, non-ω-stable theory such that the universe is weakly minimal and locally modular. Then for all finite A there is a finite B ⊂ cl(A) such that a ∈ cl(A) iff a ∈ cl(b) for some b ∈ B.Recall the property (S) defined in the abstract of [B1].Theorem C. Let T be as in Theorem B. Then, if T does not satisfy (S), T hasmany countable models.Combining Theorem C and the results in [B1] we obtain Vaught's conjecture for such theories.


2018 ◽  
Vol 149 (04) ◽  
pp. 979-994 ◽  
Author(s):  
Daomin Cao ◽  
Wei Dai

AbstractIn this paper, we are concerned with the following bi-harmonic equation with Hartree type nonlinearity $$\Delta ^2u = \left( {\displaystyle{1 \over { \vert x \vert ^8}}* \vert u \vert ^2} \right)u^\gamma ,\quad x\in {\open R}^d,$$where 0 &lt; γ ⩽ 1 and d ⩾ 9. By applying the method of moving planes, we prove that nonnegative classical solutions u to (𝒫γ) are radially symmetric about some point x0 ∈ ℝd and derive the explicit form for u in the Ḣ2 critical case γ = 1. We also prove the non-existence of nontrivial nonnegative classical solutions in the subcritical cases 0 &lt; γ &lt; 1. As a consequence, we also derive the best constants and extremal functions in the corresponding Hardy-Littlewood-Sobolev inequalities.


1962 ◽  
Vol 5 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Günter Bruns

Let B be a Boolean algebra and let ℳ and n be two systems of subsets of B, both containing all finite subsets of B. Let us assume further that the join ∨M of every set M∊ℳ and the meet ∧N of every set N∊n exist. Several authors have treated the question under which conditions there exists an isomorphism φ between B and a field δ of sets, satisfying the conditions:


1979 ◽  
Vol 44 (3) ◽  
pp. 289-306 ◽  
Author(s):  
Victor Harnik

The central notion of this paper is that of a (conjunctive) game-sentence, i.e., a sentence of the formwhere the indices ki, ji range over given countable sets and the matrix conjuncts are, say, open -formulas. Such game sentences were first considered, independently, by Svenonius [19], Moschovakis [13]—[15] and Vaught [20]. Other references are [1], [3]—[5], [10]—[12]. The following normal form theorem was proved by Vaught (and, in less general forms, by his predecessors).Theorem 0.1. Let L = L0(R). For every -sentence ϕ there is an L0-game sentence Θ such that ⊨′ ∃Rϕ ↔ Θ.(A word about the notations: L0(R) denotes the language obtained from L0 by adding to it the sequence R of logical symbols which do not belong to L0; “⊨′α” means that α is true in all countable models.)0.1 can be restated as follows.Theorem 0.1′. For every-sentence ϕ there is an L0-game sentence Θ such that ⊨ϕ → Θ and for any-sentence ϕ if ⊨ϕ → ϕ and L′ ⋂ L ⊆ L0, then ⊨ Θ → ϕ.(We sketch the proof of the equivalence between 0.1 and 0.1′.0.1 implies 0.1′. This is obvious once we realize that game sentences and their negations satisfy the downward Löwenheim-Skolem theorem and hence, ⊨′α is equivalent to ⊨α whenever α is a boolean combination of and game sentences.


2019 ◽  
Vol 84 (3) ◽  
pp. 987-1006
Author(s):  
LÉO JIMENEZ

AbstractIn a stable theory, a stationary type $q \in S\left( A \right)$ internal to a family of partial types ${\cal P}$ over A gives rise to a type-definable group, called its binding group. This group is isomorphic to the group $Aut\left( {q/{\cal P},A} \right)$ of permutations of the set of realizations of q, induced by automorphisms of the monster model, fixing ${\cal P}\,\mathop \cup \nolimits \,A$ pointwise. In this article, we investigate families of internal types varying uniformly, what we will call relative internality. We prove that the binding groups also vary uniformly, and are the isotropy groups of a natural type-definable groupoid (and even more). We then investigate how properties of this groupoid are related to properties of the type. In particular, we obtain internality criteria for certain 2-analysable types, and a sufficient condition for a type to preserve internality.


Author(s):  
Xinfu Chen ◽  
Yuanwei Qi ◽  
Mingxin Wang

We consider, for m ∈ (0, 1) and q > 1, the porous media equation with absorption We are interested in those solutions, which we call singular solutions, that are non-negative, non-trivial, continuous in Rn × [0, ∞)\{(0, 0)}, and satisfy u(x, 0) = 0 for all x ≠ 0. We prove the following results. When q ≥ m + 2/n, there does not exist any such singular solution. When q < m + 2/n, there exists, for every c > 0, a unique singular solution u = u(c), called the fundamental solution with initial mass c, which satisfies ∫Rnu(·, t) → c as t ↘ 0. Also, there exists a unique singular solution u = u∞, called the very singular solution, which satisfies ∫Rnu∞(·, t) → ∞ as t ↘ 0.In addition, any singular solution is either u∞ or u(c) for some finite positive c, u(c1) < u(c2) when c1 < c2, and u(c) ↗ u∞ as c ↗ ∞.Furthermore, u∞ is self-similar in the sense that u∞(x, t) = t−αw(|x| t−αβ) for α = 1/(q − 1), β = ½(q − m), and some smooth function w defined on [0, ∞), so that is a finite positive constant independent of t > 0.


2019 ◽  
Vol 84 (3) ◽  
pp. 1168-1175
Author(s):  
BYUNGHAN KIM

AbstractIn this article, we prove that if a countable non-${\aleph _0}$-categorical NSOP1 theory with nonforking existence has finitely many countable models, then there is a finite tuple whose own preweight is ω. This result is an extension of a theorem of the author on any supersimple theory.


Author(s):  
A. Cant ◽  
C. A. Hurst

The algebraic structure of relativistic wave equations of the formis considered. This leads to the problem of finding all Lie algebrasLwhich contain the Lorentz Lie algebraso(3, 1) and also contain a “four-vector” αμa such anLgives rise to a family of wave equations. The simplest possibility is the Bhabha equations whereL≅so(5). Some authors have claimed that this is theonlyone, but it is shown that there are many other possibilities still in accord with physical requirements. Known facts about representations, along with Dynkin's theory of the embeddings of Lie algebras, are used to obtain a partial classification of wave equations. The discrete transformationsC, P, Tare also discussed, along with reality properties. Finally, a simple example of a family of wave equations based onL=sp(12) is considered in detail. Theso(3, 1) content and mass spectra are given for the low order members of the family, and the problem of causality is briefly discussed.


1992 ◽  
Vol 57 (3) ◽  
pp. 988-991 ◽  
Author(s):  
Devdatt P. Dubhashi

In this paper we present a new proof of a decidability result for the firstorder theories of certain subvarieties of Heyting algebras. By a famous result of Grzegorczyk, the full first-order theory of Heyting algebras is undecidable. In contrast, the first-order theory of Boolean algebras and of many interesting subvarieties of Boolean algebras is decidable by a result of Tarski [8]. In fact, Kozen [6] gives a comprehensive quantitative classification of the complexities of the first-order theories of various subclasses of Boolean algebras (including the full variety).This stark contrast may be reconciled from the standpoint of universal algebra as arising out of the byplay between structure and decidability: A good structure theory entails positive decidability results. Boolean algebras have a well-developed structure theory [5], while the corresponding theory for Heyting algebras is quite meagre. Viewed in this way, we may hope to obtain decidability results if we focus attention on subclasses of Heyting algebras with good structural properties.K. Idziak and P. M. Idziak [4] have considered an interesting subvariety of Heyting algebras, , which is the variety generated by all linearly-ordered Heyting algebras. This variety is shown to be the largest subvariety of Heyting algebras with a decidable theory of its finite members. However their proof is rather indirect, proceeding via semantic interpretation into the monadic second order theory of trees. The latter is a powerful theory—it interprets many other theories—but is computationally highly infeasible. In fact, by a celebrated theorem of Rabin, its complexity is not bounded by any elementary recursive function. Consequently, the proof of [4], besides being indirect, also gives no information on the quantitative computational complexity of the theory of .Here we pursue the theme of structure and decidability. We isolate the indecomposable algebras in and use this to prove a theorem on the structure of if -algebras. This theorem relates the -algebras structurally to Boolean algebras. This enables us to bootstrap the known decidability results for Boolean algebras to the variety if .


Sign in / Sign up

Export Citation Format

Share Document