scholarly journals About the proof-theoretic ordinals of weak fixed point theories

1992 ◽  
Vol 57 (3) ◽  
pp. 1108-1119 ◽  
Author(s):  
Gerhard Jäger ◽  
Barbara Primo

AbstractThis paper presents several proof-theoretic results concerning weak fixed point theories over second order number theory with arithmetic comprehension and full or restricted induction on the natural numbers. It is also shown that there are natural second order theories which are proof-theoretically equivalent but have different proof-theoretic ordinals.

2008 ◽  
Vol 1 (1) ◽  
pp. 126-142 ◽  
Author(s):  
P. D. WELCH

We show that the set of ultimately true sentences in Hartry Field's Revenge-immune solution model to the semantic paradoxes is recursively isomorphic to the set of stably true sentences obtained in Hans Herzberger's revision sequence starting from the null hypothesis. We further remark that this shows that a substantial subsystem of second-order number theory is needed to establish the semantic values of sentences in Field's relative consistency proof of his theory over the ground model of the standard natural numbers: \Delta _3^1-CA0 (second-order number theory with a \Delta _3^1-comprehension axiom scheme) is insufficient. We briefly consider his claim to have produced a ‘revenge-immune’ solution to the semantic paradoxes by introducing this conditional. We remark that the notion of a ‘determinately true’ operator can be introduced in other settings.


2014 ◽  
Vol 79 (3) ◽  
pp. 712-732 ◽  
Author(s):  
SATO KENTARO

AbstractThis article reports that some robustness of the notions of predicativity and of autonomous progression is broken down if as the given infinite total entity we choose some mathematical entities other than the traditional ω. Namely, the equivalence between normal transfinite recursion scheme and new dependent transfinite recursion scheme, which does hold in the context of subsystems of second order number theory, does not hold in the context of subsystems of second order set theory where the universe V of sets is treated as the given totality (nor in the contexts of those of n+3-th order number or set theories, where the class of all n+2-th order objects is treated as the given totality).


1995 ◽  
Vol 60 (4) ◽  
pp. 1137-1152
Author(s):  
James H. Schmerl

Some methods of constructing nonstandard models work only for particular theories, such as ZFC, or CA + AC (which is second order number theory with the choice scheme). The examples of this which motivated the results of this paper occur in the main theorems of [5], which state that if T is any consistent extension of either ZFC0 (which is ZFC but with only countable replacement) or CA + AC and if κ and λ are suitably chosen cardinals, then T has a model which is κ-saturated and has the λ-Bolzano-Weierstrass property. (Compare with Theorem 3.5.) Another example is a result from [12] which states that if T is any consistent extension of CA + AC and cf (λ) > ℵ0, then T has a natural λ-Archimedean model. (Compare with Theorem 3.1 and the comments following it.) Still another example is a result in [6] in which it is shown that if a model of Peano arithmetic is expandable to a model of ZF or of CA, then so is any cofinal extension of . (Compare with Theorem 3.10.) Related types of constructions can also be found in [10] and [11].A reflection principle will be proved here, allowing these constructions to be extended to models of many other theories, among which are some exceedingly weak theories and also all of their completions.


1962 ◽  
Vol 27 (4) ◽  
pp. 383-390 ◽  
Author(s):  
S. Feferman ◽  
C. Spector

We deal in the following with certain theories S, by which we mean sets of sentences closed under logical deduction. The basic logic is understood to be the classical one, but we place no restriction on the orders of the variables to be used. However, we do assume that we can at least express certain notions from classical first-order number theory within these theories. In particular, there should correspond to each primitive recursive function ξ a formula φ(χ), where ‘x’ is a variable ranging over natural numbers, such that for each numeral ñ, φ(ñ) expresses in the language of S that ξ(η) = 0. Such formulas, when obtained say by the Gödel method of eliminating primitive recursive definitions in favor of arithmetical definitions in +. ·. are called PR-formulas (cf. [1] §2 (C)).


SeMA Journal ◽  
2021 ◽  
Author(s):  
Rosana Rodríguez-López ◽  
Rakesh Tiwari

AbstractThe aim of this paper is to introduce a new class of mixed contractions which allow to revise and generalize some results obtained in [6] by R. Gubran, W. M. Alfaqih and M. Imdad. We also provide an example corresponding to this class of mappings and show how the new fixed point result relates to the above-mentioned result in [6]. Further, we present an application to the solvability of a two-point boundary value problem for second order differential equations.


2006 ◽  
Vol 73 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Jifeng Chu ◽  
Xiaoning Lin ◽  
Daqing Jiang ◽  
Donal O'Regan ◽  
R. P. Agarwal

In this paper, we study the existence of positive periodic solutions to the equation x″ = f (t, x). It is proved that such a equation has more than one positive periodic solution when the nonlinearity changes sign. The proof relies on a fixed point theorem in cones.


2004 ◽  
Vol 89 (516) ◽  
pp. 403-408
Author(s):  
P. G. Brown

In many of the basic courses in Number Theory, Finite Mathematics and Cryptography we come across the so-called arithmetic functions such as ϕn), σ(n), τ(n), μ(n), etc, whose domain is the set of natural numbers. These functions are well known and evaluated through the prime factor decomposition of n. It is less well known that these functions possess inverses (with respect to Dirichlet multiplication) which have interesting properties and applications.


Sign in / Sign up

Export Citation Format

Share Document