Finite algebras of relations are representable on finite sets

1999 ◽  
Vol 64 (1) ◽  
pp. 243-267 ◽  
Author(s):  
H. Andréka ◽  
I. Hodkinson ◽  
I. Németi

AbstractUsing a combinatorial theorem of Herwig on extending partial isomorphisms of relational structures, we give a simple proof that certain classes of algebras, including Crs, polyadic Crs, and WA, have the ‘finite base property’ and have decidable universal theories, and that any finite algebra in each class is representable on a finite set.


2016 ◽  
Vol 26 (01) ◽  
pp. 123-155
Author(s):  
Joel Berman

For [Formula: see text] a positive integer and [Formula: see text] a finite set of finite algebras, let [Formula: see text] denote the largest [Formula: see text]-generated subdirect product whose subdirect factors are algebras in [Formula: see text]. When [Formula: see text] is the set of all [Formula: see text]-generated subdirectly irreducible algebras in a locally finite variety [Formula: see text], then [Formula: see text] is the free algebra [Formula: see text] on [Formula: see text] free generators for [Formula: see text]. For a finite algebra [Formula: see text] the algebra [Formula: see text] is the largest [Formula: see text]-generated subdirect power of [Formula: see text]. For every [Formula: see text] and finite [Formula: see text] we provide an upper bound on the cardinality of [Formula: see text]. This upper bound depends only on [Formula: see text] and these basic parameters: the cardinality of the automorphism group of [Formula: see text], the cardinalities of the subalgebras of [Formula: see text], and the cardinalities of the equivalence classes of certain equivalence relations arising from congruence relations of [Formula: see text]. Using this upper bound on [Formula: see text]-generated subdirect powers of [Formula: see text], as [Formula: see text] ranges over the [Formula: see text]-generated subdirectly irreducible algebras in [Formula: see text], we obtain an upper bound on [Formula: see text]. And if all the [Formula: see text]-generated subdirectly irreducible algebras in [Formula: see text] have congruence lattices that are chains, then we characterize in several ways those [Formula: see text] for which this upper bound is obtained.



2021 ◽  
Vol 82 (2) ◽  
Author(s):  
Robin Hirsch ◽  
Jaš Šemrl

AbstractThe motivation for using demonic calculus for binary relations stems from the behaviour of demonic turing machines, when modelled relationally. Relational composition (; ) models sequential runs of two programs and demonic refinement ($$\sqsubseteq $$ ⊑ ) arises from the partial order given by modeling demonic choice ($$\sqcup $$ ⊔ ) of programs (see below for the formal relational definitions). We prove that the class $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) of abstract $$(\le , \circ )$$ ( ≤ , ∘ ) structures isomorphic to a set of binary relations ordered by demonic refinement with composition cannot be axiomatised by any finite set of first-order $$(\le , \circ )$$ ( ≤ , ∘ ) formulas. We provide a fairly simple, infinite, recursive axiomatisation that defines $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) . We prove that a finite representable $$(\le , \circ )$$ ( ≤ , ∘ ) structure has a representation over a finite base. This appears to be the first example of a signature for binary relations with composition where the representation class is non-finitely axiomatisable, but where the finite representation property holds for finite structures.



1956 ◽  
Vol 21 (3) ◽  
pp. 304-308 ◽  
Author(s):  
H. G. Rice

The two results of this paper (a theorem and an example) are applications of a device described in section 1. Our notation is that of [4], with which we assume familiarity. It may be worth while to mention in particular the function Φ(n, x) which recursively enumerates the partial recursive functions of one variable, the Cantor enumerating functions J(x, y), K(x), L(x), and the classes F and Q of r.e. (recursively enumerable) and finite sets respectively.It is possible to “give” a finite set in a way which conveys the maximum amount of information; this may be called “giving explicitly”, and it requires that in addition to an effective enumeration or decision procedure for the set we give its cardinal number. It is sometimes desired to enumerate effectively an infinite class of finite sets, each given explicitly (e.g., [4] p. 360, or Dekker [1] p. 497), and we suggest here a device for doing this.We set up an effective one-to-one correspondence between the finite sets of non-negative integers and these integers themselves: the integer , corresponds to the set αi, = {a1, a2, …, an} and inversely. α0 is the empty set. Clearly i can be effectively computed from the elements of αi and its cardinal number.



Author(s):  
Joaquín Moraga

Abstract In this article, we prove a local implication of boundedness of Fano varieties. More precisely, we prove that $d$ -dimensional $a$ -log canonical singularities with standard coefficients, which admit an $\epsilon$ -plt blow-up, have minimal log discrepancies belonging to a finite set which only depends on $d,\,a$ and $\epsilon$ . This result gives a natural geometric stratification of the possible mld's in a fixed dimension by finite sets. As an application, we prove the ascending chain condition for minimal log discrepancies of exceptional singularities. We also introduce an invariant for klt singularities related to the total discrepancy of Kollár components.



Author(s):  
Joram Lindenstrauss ◽  
David Preiss ◽  
Tiˇser Jaroslav

This chapter treats results on ε‎-Fréchet differentiability of Lipschitz functions in asymptotically smooth spaces. These results are highly exceptional in the sense that they prove almost Frechet differentiability in some situations when we know that the closed convex hull of all (even almost) Fréchet derivatives may be strictly smaller than the closed convex hull of the Gâteaux derivatives. The chapter first presents a simple proof of an almost differentiability result for Lipschitz functions in asymptotically uniformly smooth spaces before discussing the notion of asymptotic uniform smoothness. It then proves that in an asymptotically smooth Banach space X, any finite set of real-valued Lipschitz functions on X has, for every ε‎ > 0, a common point of ε‎-Fréchet differentiability.



1976 ◽  
Vol 15 (2) ◽  
pp. 245-251
Author(s):  
Reinhard A. Razen

Let A = {ai} be a finite set of integers and let p and m denote the cardinalities of A + A = {ai+aj} and A - A {ai–aj}, respectively. In the paper relations are established between p and m; in particular, if max {ai–ai-1} = 2 those sets are characterized for which p = m holds.



1995 ◽  
Vol 52 (2) ◽  
pp. 215-224 ◽  
Author(s):  
Hong-Xun Yi

In 1976, Gross posed the question “can one find two (or possibly even one) finite sets Sj (j = 1, 2) such that any two entire functions f and g satisfying Ef(Sj) = Eg(Sj) for j = 1,2 must be identical?”, where Ef(Sj) stands for the inverse image of Sj under f. In this paper, we show that there exists a finite set S with 11 elements such that for any two non-constant meromorphic functions f and g the conditions Ef(S) = Eg(S) and Ef({∞}) = Eg({∞}) imply f ≡ g. As a special case this also answers the question posed by Gross.



2008 ◽  
Vol 85 (1) ◽  
pp. 75-80
Author(s):  
JAMES EAST

AbstractA submonoid S of a monoid M is said to be cofull if it contains the group of units of M. We extract from the work of Easdown, East and FitzGerald (2002) a sufficient condition for a monoid to embed as a cofull submonoid of the coset monoid of its group of units, and show further that this condition is necessary. This yields a simple description of the class of finite monoids which embed in the coset monoids of their group of units. We apply our results to give a simple proof of the result of McAlister [D. B. McAlister, ‘Embedding inverse semigroups in coset semigroups’, Semigroup Forum20 (1980), 255–267] which states that the symmetric inverse semigroup on a finite set X does not embed in the coset monoid of the symmetric group on X. We also explore examples, which are necessarily infinite, of embeddings whose images are not cofull.



1977 ◽  
Vol 17 (1) ◽  
pp. 125-134 ◽  
Author(s):  
Peter Frankl
Keyword(s):  

Let X be a finite set of cardinality n, and let F be a family of k-subsets of X. In this paper we prove the following conjecture of P. Erdös and V.T. Sós.If n > n0(k), k ≥ 4, then we can find two members F and G in F such that |F ∩ G| = 1.



1989 ◽  
Vol 54 (3) ◽  
pp. 1018-1022 ◽  
Author(s):  
Peter Perkins

A computable groupoid is an algebra ‹N, g› where N is the set of natural numbers and g is a recursive (total) binary operation on N. A set L of natural numbers is a computable list of computable groupoids iff L is recursive, ‹N, ϕe› is a computable groupoid for each e ∈ L, and e ∈ L whenever e codes a primitive recursive description of a binary operation on N.Theorem 1. Let L be any computable list of computable groupoids. The set {e ∈ L: the equational theory of ‹N, ϕe› is finitely axiomatizable} is not recursive.Theorem 2. Let S be any recursive set of positive integers. A computable groupoid GS can be constructed so that S is inifinite iff GS has a finitely axiomatizable equational theory.The problem of deciding which finite algebras have finitely axiomatizable equational theories has remained open since it was first posed by Tarski in the early 1960's. Indeed, it is still not known whether the set of such finite algebras is recursively (or corecursively) enumerable. McKenzie [7] has shown that this question of finite axiomatizability for any (finite) algebra of finite type can be reduced to that for a (finite) groupoid.



Sign in / Sign up

Export Citation Format

Share Document