An axiomatics for nonstandard set theory, based on von Neumann–Bernays–Gödel Theory

2001 ◽  
Vol 66 (3) ◽  
pp. 1321-1341 ◽  
Author(s):  
P. V. Andreev ◽  
E. I. Gordon

AbstractWe present an axiomatic framework for nonstandard analysis—the Nonstandard Class Theory (NCT) which extends von Neumann–Gödel–Bernays Set Theory (NBG) by adding a unary predicate symbol St to the language of NBG (St(X) means that the class X is standard) and axioms—related to it—analogs of Nelson's idealization, standardization and transfer principles. Those principles are formulated as axioms, rather than axiom schemes, so that NCT is finitely axiomatizable. NCT can be considered as a theory of definable classes of Bounded Set Theory by V. Kanovei and M. Reeken. In many aspects NCT resembles the Alternative Set Theory by P. Vopenka. For example there exist semisets (proper subclasses of sets) in NCT and it can be proved that a set has a standard finite cardinality iff it does not contain any proper subsemiset. Semisets can be considered as external classes in NCT. Thus the saturation principle can be formalized in NCT.

2002 ◽  
Vol 67 (1) ◽  
pp. 315-325 ◽  
Author(s):  
Mauro Di Nasso

AbstractA nonstandard set theory *ZFC is proposed that axiomatizes the nonstandard embedding *. Besides the usual principles of nonstandard analysis, all axioms of ZFC except regularity are assumed. A strong form of saturation is also postulated. *ZFC is a conservative extension of ZFC.


Author(s):  
Michael Potter

To begin with we shall use the word ‘collection’ quite broadly to mean anything the identity of which is solely a matter of what its members are (including ‘sets’ and ‘classes’). Which collections exist? Two extreme positions are initially appealing. The first is to say that all do. Unfortunately this is inconsistent because of Russell’s paradox: the collection of all collections which are not members of themselves does not exist. The second is to say that none do, but to talk as if they did whenever such talk can be shown to be eliminable and therefore harmless. This is consistent but far too weak to be of much use. We need an intermediate theory. Various theories of collections have been proposed since the start of the twentieth century. What they share is the axiom of ‘extensionality’, which asserts that any two sets which have exactly the same elements must be identical. This is just a matter of definition: objects which do not satisfy extensionality are not collections. Beyond extensionality, theories differ. The most popular among mathematicians is Zermelo–Fraenkel set theory (ZF). A common alternative is von Neumann–Bernays–Gödel class theory (NBG), which allows for the same sets but also has proper classes, that is, collections whose members are sets but which are not themselves sets (such as the class of all sets or the class of all ordinals). Two general principles have been used to motivate the axioms of ZF and its relatives. The first is the iterative conception, according to which sets occur cumulatively in layers, each containing all the members and subsets of all previous layers. The second is the doctrine of limitation of size, according to which the ‘paradoxical sets’ (that is, the proper classes of NBG) fail to be sets because they are in some sense too big. Neither principle is altogether satisfactory as a justification for the whole of ZF: for example, the replacement schema is motivated only by limitation of size; and ‘foundation’ is motivated only by the iterative conception. Among the other systems of set theory to have been proposed, the one that has received widespread attention is Quine’s NF (from the title of an article, ‘New Foundations for Mathematical Logic’), which seeks to avoid paradox by means of a syntactic restriction but which has not been provided with an intuitive justification on the basis of any conception of set. It is known that if NF is consistent then ZF is consistent, but the converse result has still not been proved.


1987 ◽  
Vol 52 (4) ◽  
pp. 897-907
Author(s):  
Joji Takahashi

As is well known, the following are equivalent for any uniform ultrafilter U on an uncountable cardinal:(i) U is selective;(ii) U → ;(iii) U → .In §1 of this paper, we consider this result in terms of M-ultrafilters (Definition 1.1), where M is a transitive model of ZFC (Zermelo-Fraenkel set theory with the axiom of choice). We define the partition properties and for M-ultrafilters (Definition 1.3), and characterize those M-ultrafilters that possess these properties (Theorem 1.5) so that the result mentioned at the beginning is subsumed as the special case that M is V, the universe of all sets. It turns out that the two properties have to be handled separately, and that, besides selectivity, we need to formulate additional conditions (Definition 1.4). The extra conditions become superfluous when M = V because they are then trivially satisfied. One of them is nothing new; it is none other than Kunen's iterability-of-ultrapowers condition.In §2, we obtain characterizations of the partition properties I+ → and I+ → (Definition 2.3) of uniform ideals I on an infinite cardinal κ (Theorem 2.6). This is done by applying the main results of §1 to the canonical -ultrafilter in the Boolean-valued model constructed from the completion of the quotient algebra P(κ)/I. They are related to certain known characterizations of weakly compact and of Ramsey cardinals.Our basic set theory is ZFC. In §1, it has to be supplemented by a new unary predicate symbol M and new nonlogical axioms that make M look like a transitive model of ZFC.


1991 ◽  
Vol 56 (2) ◽  
pp. 439-457 ◽  
Author(s):  
Kai Hauser

Indescribability is closely related to the reflection principles of Zermelo-Fränkel set theory. In this axiomatic setting the universe of all sets stratifies into a natural cumulative hierarchy (Vα: α ϵ On) such that any formula of the language for set theory that holds in the universe already holds in the restricted universe of all sets obtained by some stage.The axioms of ZF prove the existence of many ordinals α such that this reflection scheme holds in the world Vα. Hanf and Scott noticed that one arrives at a large cardinal notion if the reflecting formulas are allowed to contain second order free variables to which one assigns subsets of Vα. For a given collection Ω of formulas in the ϵ language of set theory with higher type variables and a unary predicate symbol they define an ordinal α to be Ω indescribable if for all sentences Φ in Ω and A ⊆ VαSince a sufficient coding apparatus is available, this definition is (for the classes of formulas that we are going to consider) equivalent to the one that one obtains by allowing finite sequences of relations over Vα, some of which are possibly k-ary. We will be interested mainly in certain standardized classes of formulas: Let (, respectively) denote the class of all formulas in the language introduced above whose prenex normal form has n alternating blocks of quantifiers of type m (i.e. (m + 1)th order) starting with ∃ (∀, respectively) and no quantifiers of type greater than m. In Hanf and Scott [1961] it is shown that in ZFC, indescribability is equivalent to inaccessibility and indescribability coincides with weak compactness.


1992 ◽  
Vol 57 (2) ◽  
pp. 741-748 ◽  
Author(s):  
David Ballard ◽  
Karel Hrbacek

In the thirty years since its invention by Abraham Robinson, nonstandard analysis has become a useful tool for research in many areas of mathematics. It seems fair to say, however, that the search for practically satisfactory foundations for the subject is not yet completed. New proposals, intended to remedy various shortcomings of older approaches, continue to be put forward. The objective of this paper is to show that nonstandard concepts have a natural place in the usual (more or less “standard”) set theory, and to argue that this approach improves upon various aspects of hitherto considered systems, while retaining most of their attractive features. We do this by working in Zermelo-Fraenkel set theory with non-well-founded sets. It has always been clear that the axiom of regularity may fail for external sets. The previous approaches either avoid non-well-foundedness by considering only that fragment of nonstandard set theory that is well-founded (over individuals; enlargements of Robinson and Zakon [17]) or reluctantly live with it (various axiomatic nonstandard set theories). Ballard and Davidon [2] were the first to propose constructive use for non-well-foundedness in the foundations of nonstandard analysis. In the present paper we adopt a very strong anti-foundation axiom. In the resulting more or less “usual” set theory, the (to the “standard” mathematician) unfamiliar concepts of standard, external and internal sets can be defined and their requisite properties proved (rather than postulated, as is the case in axiomatic nonstandard set theories).


2004 ◽  
Vol 69 (1) ◽  
pp. 165-182 ◽  
Author(s):  
Petr Andreev ◽  
Karel Hrbacek

AbstractWe prove that Standardization fails in every nontrivial universe definable in the nonstandard set theory BST, and that a natural characterization of the standard universe is both consistent with and independent of BST. As a consequence we obtain a formulation of nonstandard class theory in the ∈-language.


1990 ◽  
Vol 117 ◽  
pp. 1-36 ◽  
Author(s):  
Masanao Ozawa

Recently, systematic applications of the Scott-Solovay Boolean valued set theory were done by several authors; Takeuti [25, 26, 27, 28, 29, 30], Nishimura [13, 14] Jech [8] and Ozawa [15, 16, 17, 18, 19, 20] in analysis and Smith [23], Eda [2, 3] in algebra. This approach seems to be providing us with a new and powerful machinery in analysis and algebra. In the present paper, we shall study Banach space objects in the Scott-Solovay Boolean valued universe and provide some useful transfer principles from theorems of Banach spaces to theorems of Banach modules over commutative AW*-algebras. The obtained machinery will be applied to resolve some problems concerning the module structures of von Neumann algebras.


1989 ◽  
Vol 54 (3) ◽  
pp. 1000-1008 ◽  
Author(s):  
Peter Fletcher

AbstractNonstandard set theory is an attempt to generalise nonstandard analysis to cover the whole of classical mathematics. Existing versions (Nelson, Hrbáček, Kawai) are unsatisfactory in that the unlimited idealisation principle conflicts with the wish to have a full theory of external sets.I re-analyse the underlying requirements of nonstandard set theory and give a new formal system, stratified nonstandard set theory, which seems to meet them better than the other versions.


2014 ◽  
Vol 20 (1) ◽  
pp. 94-97
Author(s):  
Natasha Dobrinen

1991 ◽  
Vol 56 (4) ◽  
pp. 1184-1194 ◽  
Author(s):  
Steven Buechler

AbstractLet D be a strongly minimal set in the language L, and D′ ⊃ D an elementary extension with infinite dimension over D. Add to L a unary predicate symbol D and let T′ be the theory of the structure (D′, D), where D interprets the predicate D. It is known that T′ is ω-stable. We proveTheorem A. If D is not locally modular, then T′ has Morley rank ω.We say that a strongly minimal set D is pseudoprojective if it is nontrivial and there is a k < ω such that, for all a, b ∈ D and closed X ⊂ D, a ∈ cl(Xb) ⇒ there is a Y ⊂ X with a ∈ cl(Yb) and ∣Y∣ ≤ k. Using Theorem A, we proveTheorem B. If a strongly minimal set D is pseudoprojective, then D is locally projective.The following result of Hrushovski's (proved in §4) plays a part in the proof of Theorem B.Theorem C. Suppose that D is strongly minimal, and there is some proper elementary extension D1 of D such that the theory of the pair (D1, D) is ω1-categorical. Then D is locally modular.


Sign in / Sign up

Export Citation Format

Share Document