A completeness theorem in modal logic

1959 ◽  
Vol 24 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Saul A. Kripke

The present paper attempts to state and prove a completeness theorem for the system S5 of [1], supplemented by first-order quantifiers and the sign of equality. We assume that we possess a denumerably infinite list of individual variables a, b, c, …, x, y, z, …, xm, ym, zm, … as well as a denumerably infinite list of n-adic predicate variables Pn, Qn, Rn, …, Pmn, Qmn, Rmn,…; if n=0, an n-adic predicate variable is often called a “propositional variable.” A formula Pn(x1, …,xn) is an n-adic prime formula; often the superscript will be omitted if such an omission does not sacrifice clarity.

2019 ◽  
Vol 12 (2) ◽  
pp. 255-270 ◽  
Author(s):  
PAVEL NAUMOV ◽  
JIA TAO

AbstractModal logic S5 is commonly viewed as an epistemic logic that captures the most basic properties of knowledge. Kripke proved a completeness theorem for the first-order modal logic S5 with respect to a possible worlds semantics. A multiagent version of the propositional S5 as well as a version of the propositional S5 that describes properties of distributed knowledge in multiagent systems has also been previously studied. This article proposes a version of S5-like epistemic logic of distributed knowledge with quantifiers ranging over the set of agents, and proves its soundness and completeness with respect to a Kripke semantics.


Author(s):  
Raymond M. Smullyan

As we remarked in the preface, although this volume is a sequel to our earlier volume G.I.T. (Gödel’s Incompleteness Theorems), it can be read independently by those readers familiar with at least one proof of Gödel’s first incompleteness theorem. In this chapter we give the notation, terminology and main results of G.I.T. that are needed for this volume. Readers familiar with G.I.T. can skip this chapter or perhaps glance through it briefly as a refresher. §0. Preliminaries. we assume the reader to be familiar with the basic notions of first-order logic—the logical connectives, quantifiers, terms, formulas, free and bound occurrences of variables, the notion of interpretations (or models), truth under an interpretation, logical validity (truth under all interpretations), provability (in some complete system of first-order logic with identity) and its equivalence to logical validity (Gödel’s completeness theorem). we let S be a system (theory) couched in the language of first-order logic with identity and with predicate and/or function symbols and with names for the natural numbers. A system S is usually presented by taking some standard axiomatization of first-order logic with identity and adding other axioms called the non-logical axioms of S.we associate with each natural number n an expression n̅ of S called the numeral designating n (or the name of n).we could, for example, take 0̅,1̅,2̅, . . . ,to be the expressions 0,0', 0",..., as we did in G.I.T. we have our individual variables arranged in some fixed infinite sequence v1, v2,..., vn , . . . . By F(v1, ..., vn) we mean any formula whose free variables are all among v1,... ,vn, and for any (natural) numbers k1,...,kn by F(к̅1 ,... к̅n), we mean the result of substituting the numerals к̅1 ,... к̅n, for all free occurrences of v1,... ,vn in F respectively.


1993 ◽  
Vol 58 (3) ◽  
pp. 800-823 ◽  
Author(s):  
D. M. Gabbay ◽  
V. B. Shehtman

The interest in fragments of predicate logics is motivated by the well-known fact that full classical predicate calculus is undecidable (cf. Church [1936]). So it is desirable to find decidable fragments which are in some sense “maximal”, i.e., which become undecidable if they are “slightly” extended. Or, alternatively, we can look for “minimal” undecidable fragments and try to identify the vague boundary between decidability and undecidability. A great deal of work in this area concerning mainly classical logic has been done since the thirties. We will not give a complete review of decidability and undecidability results in classical logic, referring the reader to existing monographs (cf. Suranyi [1959], Lewis [1979], and Dreben, Goldfarb [1979]). A short summary can also be found in the well-known book Church [1956]. Let us recall only several facts. Herein we will consider only logics without functional symbols, constants, and equality.(C1) The fragment of the classical logic with only monadic predicate letters is decidable (cf. Behmann [1922]).(C2) The fragment of the classical logic with a single binary predicate letter is undecidable. (This is a consequence of Gödel [1933].)(C3) The fragment of the classical logic with a single individual variable is decidable; in fact it is equivalent to Lewis S5 (cf. Wajsberg [1933]).(C4) The fragment of the classical logic with two individual variables is decidable (Segerberg [1973] contains a proof using modal logic; Scott [1962] and Mortimer [1975] give traditional proofs.)(C5) The fragment of the classical logic with three individual variables and binary predicate letters is undecidable (cf. Surańyi [1943]). In fact this paper considers formulas of the following typeφ,ψ being quantifier-free and the set of binary predicate letters which can appear in φ or ψ being fixed and finite.


1967 ◽  
Vol 32 (3) ◽  
pp. 345-351 ◽  
Author(s):  
R. H. Thomason ◽  
H. Leblanc

In [1] Ludwik Borkowski takes a quantifier symbol ‘Q1’ (e.g., the familiar ‘∀’) to permit definition of another quantifier symbol ‘Q1’ if, where ‘f’ is a singulary predicate variable, there exists a formula A of QC1—a first-order quantificational calculus (without identity and individual constants) having ‘Q1’ as its one primitive quantifier symbol—such that: (1) under the intended interpretations of ‘Q1’ and ‘Q1’ the biconditional (Q1X)f(X) = A is valid, (2) no individual variable occurs free in A, and (3) A contains no propositional variable, and no predicate variable other than ‘f.’


2015 ◽  
Vol 8 (3) ◽  
pp. 467-487 ◽  
Author(s):  
SHAWN STANDEFER

AbstractWe present an extension of the basic revision theory of circular definitions with a unary operator, □. We present a Fitch-style proof system that is sound and complete with respect to the extended semantics. The logic of the box gives rise to a simple modal logic, and we relate provability in the extended proof system to this modal logic via a completeness theorem, using interpretations over circular definitions, analogous to Solovay’s completeness theorem forGLusing arithmetical interpretations. We adapt our proof to a special class of circular definitions as well as to the first-order case.


1981 ◽  
Vol 4 (3) ◽  
pp. 675-760
Author(s):  
Grażyna Mirkowska

The aim of propositional algorithmic logic is to investigate the properties of program connectives. Complete axiomatic systems for deterministic as well as for nondeterministic interpretations of program variables are presented. They constitute basic sets of tools useful in the practice of proving the properties of program schemes. Propositional theories of data structures, e.g. the arithmetic of natural numbers and stacks, are constructed. This shows that in many aspects PAL is close to first-order algorithmic logic. Tautologies of PAL become tautologies of algorithmic logic after replacing program variables by programs and propositional variables by formulas. Another corollary to the completeness theorem asserts that it is possible to eliminate nondeterministic program variables and replace them by schemes with deterministic atoms.


2019 ◽  
Vol 29 (8) ◽  
pp. 1311-1344 ◽  
Author(s):  
Lauri T Hella ◽  
Miikka S Vilander

Abstract We propose a new version of formula size game for modal logic. The game characterizes the equivalence of pointed Kripke models up to formulas of given numbers of modal operators and binary connectives. Our game is similar to the well-known Adler–Immerman game. However, due to a crucial difference in the definition of positions of the game, its winning condition is simpler, and the second player does not have a trivial optimal strategy. Thus, unlike the Adler–Immerman game, our game is a genuine two-person game. We illustrate the use of the game by proving a non-elementary succinctness gap between bisimulation invariant first-order logic $\textrm{FO}$ and (basic) modal logic $\textrm{ML}$. We also present a version of the game for the modal $\mu $-calculus $\textrm{L}_\mu $ and show that $\textrm{FO}$ is also non-elementarily more succinct than $\textrm{L}_\mu $.


1999 ◽  
Vol 64 (4) ◽  
pp. 1407-1425
Author(s):  
Claes Strannegård

AbstractWe investigate the modal logic of interpretability over Peano arithmetic. Our main result is a compactness theorem that extends the arithmetical completeness theorem for the interpretability logic ILMω. This extension concerns recursively enumerable sets of formulas of interpretability logic (rather than single formulas). As corollaries we obtain a uniform arithmetical completeness theorem for the interpretability logic ILM and a partial answer to a question of Orey from 1961. After some simplifications, we also obtain Shavrukov's embedding theorem for Magari algebras (a.k.a. diagonalizable algebras).


1963 ◽  
Vol 28 (1) ◽  
pp. 43-50 ◽  
Author(s):  
L. P. Belluce ◽  
C. C. Chang

This paper contains some results concerning the completeness of a first-order system of infinite valued logicThere are under consideration two distinct notions of completeness corresponding to the two notions of validity (see Definition 3) and strong validity (see Definition 4). Both notions of validity, whether based on the unit interval [0, 1] or based on linearly ordered MV-algebras, use the element 1 as the designated truth value. Originally, it was thought by many investigators in the field that one should be able to prove that the set of valid sentences is recursively enumerable. It was first proved by Rutledge in [9] that the set of valid sentences in the monadic first-order infinite valued logic is recursively enumerable.


Sign in / Sign up

Export Citation Format

Share Document