On queueing systems by retrials

1983 ◽  
Vol 20 (2) ◽  
pp. 380-389 ◽  
Author(s):  
Vidyadhar G. Kulkarni

A general result for queueing systems with retrials is presented. This result relates the expected total number of retrials conducted by an arbitrary customer to the expected total number of retrials that take place during an arbitrary service time. This result is used in the analysis of a special system where two types of customer arrive in an independent Poisson fashion at a single-server service station with no waiting room. The service times of the two types of customer have independent general distributions with finite second moments. When the incoming customer finds the server busy he immediately leaves and tries his luck again after an exponential amount of time. The retrial rates are different for different types of customers. Expressions are derived for the expected number of retrial customers of each type.

1983 ◽  
Vol 20 (02) ◽  
pp. 380-389 ◽  
Author(s):  
Vidyadhar G. Kulkarni

A general result for queueing systems with retrials is presented. This result relates the expected total number of retrials conducted by an arbitrary customer to the expected total number of retrials that take place during an arbitrary service time. This result is used in the analysis of a special system where two types of customer arrive in an independent Poisson fashion at a single-server service station with no waiting room. The service times of the two types of customer have independent general distributions with finite second moments. When the incoming customer finds the server busy he immediately leaves and tries his luck again after an exponential amount of time. The retrial rates are different for different types of customers. Expressions are derived for the expected number of retrial customers of each type.


1997 ◽  
Vol 34 (03) ◽  
pp. 800-805 ◽  
Author(s):  
Vyacheslav M. Abramov

This paper consists of two parts. The first part provides a more elementary proof of the asymptotic theorem of the refusals stream for an M/GI/1/n queueing system discussed in Abramov (1991a). The central property of the refusals stream discussed in the second part of this paper is that, if the expectations of interarrival and service time of an M/GI/1/n queueing system are equal to each other, then the expectation of the number of refusals during a busy period is equal to 1. This property is extended for a wide family of single-server queueing systems with refusals including, for example, queueing systems with bounded waiting time.


1970 ◽  
Vol 7 (2) ◽  
pp. 465-468 ◽  
Author(s):  
A. G. Pakes

In this note we adopt the notation and terminology of Kingman (1966) without further comment. For the general single server queue one has For the queueing systems GI/D/1 and D/G/1 we shall show that it is possible to make use of the special form of the service time and inter-arrival time distributions, respectively, to evaluate the right hand side of (1). A similar evaluation applies to the limiting distribution when it exists. The results obtained could also be obtained from those of Finch (1969) and Henderson and Finch (1970) by using suitable limiting arguments.


1976 ◽  
Vol 8 (2) ◽  
pp. 395-415 ◽  
Author(s):  
D. J. Daley

The paper reviews various aspects, mostly mathematical, concerning the output or departure process of a general queueing system G/G/s/N with general arrival process, mutually independent service times, s servers (1 ≦ s ≦ ∞), and waiting room of size N (0 ≦ N ≦ ∞), subject to the assumption of being in a stable stationary condition. Known explicit results for the distribution of the stationary inter-departure intervals {Dn} for both infinite and finite-server systems are given, with some discussion on the use of reversibility in Markovian systems. Some detailed results for certain modified single-server M/G/1 systems are also available. Most of the known second-order properties of {Dn} depend on knowing that the system has either Poisson arrivals or exponential service times. The related stationary point process for which {Dn} is the stationary sequence of the corresponding Palm–Khinchin distribution is introduced and some of its second-order properties described. The final topic discussed concerns identifiability, and questions of characterizations of queueing systems in terms of the output process being a renewal process, or uncorrelated, or infinitely divisible.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
K. V. Abdul Rasheed ◽  
M. Manoharan

We consider discouraged arrival of Markovian queueing systems whose service speed is regulated according to the number of customers in the system. We will reduce the congestion in two ways. First we attempt to reduce the congestion by discouraging the arrivals of customers from joining the queue. Secondly we reduce the congestion by introducing the concept of service switches. First we consider a model in which multiple servers have three service ratesμ1,μ2, andμ(μ1≤μ2<μ), say, slow, medium, and fast rates, respectively. If the number of customers in the system exceeds a particular pointK1orK2, the server switches to the medium or fast rate, respectively. For this adaptive queueing system the steady state probabilities are derived and some performance measures such as expected number in the system/queue and expected waiting time in the system/queue are obtained. Multiple server discouraged arrival model having one service switch and single server discouraged arrival model having one and two service switches are obtained as special cases. A Matlab program of the model is presented and numerical illustrations are given.


2018 ◽  
Vol 189 ◽  
pp. 02006 ◽  
Author(s):  
S K Koh ◽  
C H Chin ◽  
Y F Tan ◽  
L E Teoh ◽  
A H Pooi ◽  
...  

In this paper, a single-server queue with negative customers is considered. The arrival of a negative customer will remove one positive customer that is being served, if any is present. An alternative approach will be introduced to derive a set of equations which will be solved to obtain the stationary queue length distribution. We assume that the service time distribution tends to a constant asymptotic rate when time t goes to infinity. This assumption will allow for finding the stationary queue length of queueing systems with non-exponential service time distributions. Numerical examples for gamma distributed service time with fractional value of shape parameter will be presented in which the steady-state distribution of queue length with such service time distributions may not be easily computed by most of the existing analytical methods.


1976 ◽  
Vol 8 (02) ◽  
pp. 395-415 ◽  
Author(s):  
D. J. Daley

The paper reviews various aspects, mostly mathematical, concerning the output or departure process of a general queueing systemG/G/s/Nwith general arrival process, mutually independent service times,sservers (1 ≦s≦ ∞), and waiting room of sizeN(0 ≦N≦ ∞), subject to the assumption of being in a stable stationary condition. Known explicit results for the distribution of the stationary inter-departure intervals {Dn} for both infinite and finite-server systems are given, with some discussion on the use of reversibility in Markovian systems. Some detailed results for certain modified single-serverM/G/1 systems are also available. Most of the known second-order properties of {Dn} depend on knowing that the system has either Poisson arrivals or exponential service times. The related stationary point process for which {Dn} is the stationary sequence of the corresponding Palm–Khinchin distribution is introduced and some of its second-order properties described. The final topic discussed concerns identifiability, and questions of characterizations of queueing systems in terms of the output process being a renewal process, or uncorrelated, or infinitely divisible.


2020 ◽  
Vol 66 (8) ◽  
pp. 3501-3527 ◽  
Author(s):  
Hung T. Do ◽  
Masha Shunko

Flow-control policies that balance server loads are well known for improving performance of queueing systems with multiple nodes. However, although load balancing benefits the system overall, it may negatively impact some of the queueing nodes. For example, it may reduce throughput rates or engender unfairness with respect to some performance measures. For queueing systems with multiple single-server nodes, we propose a set of constrained load-balancing policies that ensures the expected arrival rate to each queueing node is not reduced, and we show that such policies provide multiple benefits for each queueing node: stochastically fewer customers and lower variance of the number of customers at each queueing node. These results imply performance improvement as measured by multiple general objective functions, including but not limited to the expected number of customers at a queueing node, probability of having a high number of customers, variance of the number of customers, and expected number of customers conditional on exceeding a threshold defined by a fixed service level. We demonstrate numerically that our proposed policies capture a large portion of the potential maximal improvement. This paper was accepted by Noah Gans, stochastic models and simulation.


1973 ◽  
Vol 5 (02) ◽  
pp. 379-389 ◽  
Author(s):  
Stig I. Rosenlund

Customers arrive in groups to a single server queue with finite waiting room. Two-dimensional distributions for times and numbers of served customers between occurrences of states in the embedded Markov chain are obtained by linear algebra giving systems of equations for joint Laplace-Stieltjes transforms. For M/M/1 a simple recursion relation for the joint transform of the two variables in the title is derived and used to obtained the first and second moments.


Sign in / Sign up

Export Citation Format

Share Document