Biological Stoichiometry: A Chemical Bridge between Ecosystem Ecology and Evolutionary Biology

2006 ◽  
Vol 168 (6) ◽  
pp. S25 ◽  
Author(s):  
James Elser
2003 ◽  
Vol 2 (3) ◽  
pp. 185-193 ◽  
Author(s):  
James J. Elser

Astrobiology is an extremely wide-ranging field and thus is in special need of conceptual and theoretical frameworks that can integrate its various arenas of study. In this paper I review recent work associated with a conceptual framework known as ‘ecological stoichiometry’ and even more recent extensions in the development of ‘biological stoichiometry’. Ecological stoichiometry is the study of the balance of energy and multiple chemical elements in ecological interactions and has developed rapidly in the study of nutrient cycling and energy flow in aquatic food webs. It identifies the elemental composition of interacting biota as central in understanding the nature of their interactions and dynamics, including key feedbacks via nutrient recycling. Biological stoichiometry extends this mode of thinking to all types of biological systems. It especially seeks to better understand, at the biochemical and genetic levels, the factors influencing the elemental composition of living things and the evolutionary forces that drive and constrain that elemental composition. By connecting key concepts of ecosystem ecology, evolutionary biology and biochemistry, stoichiometric theory integrates biological information into a more coherent whole that holds considerable promise for application in astrobiology. Several examples of potential astrobiological applications of stoichiometric analysis are offered, including ones related to pre-biotic evolution, the Cambrian explosion, biosignatures and biological feedbacks on planetary carbon cycling.


2000 ◽  
Vol 15 (3) ◽  
pp. 211-222 ◽  
Author(s):  
Alan R. Templeton ◽  
Stephanie D. Maskas ◽  
Mitchell B. Cruzan

2012 ◽  
Vol 39 (2) ◽  
pp. 217-233 ◽  
Author(s):  
J. David Archibald

Studies of the origin and diversification of major groups of plants and animals are contentious topics in current evolutionary biology. This includes the study of the timing and relationships of the two major clades of extant mammals – marsupials and placentals. Molecular studies concerned with marsupial and placental origin and diversification can be at odds with the fossil record. Such studies are, however, not a recent phenomenon. Over 150 years ago Charles Darwin weighed two alternative views on the origin of marsupials and placentals. Less than a year after the publication of On the origin of species, Darwin outlined these in a letter to Charles Lyell dated 23 September 1860. The letter concluded with two competing phylogenetic diagrams. One showed marsupials as ancestral to both living marsupials and placentals, whereas the other showed a non-marsupial, non-placental as being ancestral to both living marsupials and placentals. These two diagrams are published here for the first time. These are the only such competing phylogenetic diagrams that Darwin is known to have produced. In addition to examining the question of mammalian origins in this letter and in other manuscript notes discussed here, Darwin confronted the broader issue as to whether major groups of animals had a single origin (monophyly) or were the result of “continuous creation” as advocated for some groups by Richard Owen. Charles Lyell had held similar views to those of Owen, but it is clear from correspondence with Darwin that he was beginning to accept the idea of monophyly of major groups.


Author(s):  
Günter P. Wagner

Homology—a similar trait shared by different species and derived from common ancestry, such as a seal's fin and a bird's wing—is one of the most fundamental yet challenging concepts in evolutionary biology. This book provides the first mechanistically based theory of what homology is and how it arises in evolution. The book argues that homology, or character identity, can be explained through the historical continuity of character identity networks—that is, the gene regulatory networks that enable differential gene expression. It shows how character identity is independent of the form and function of the character itself because the same network can activate different effector genes and thus control the development of different shapes, sizes, and qualities of the character. Demonstrating how this theoretical model can provide a foundation for understanding the evolutionary origin of novel characters, the book applies it to the origin and evolution of specific systems, such as cell types; skin, hair, and feathers; limbs and digits; and flowers. The first major synthesis of homology to be published in decades, this book reveals how a mechanistically based theory can serve as a unifying concept for any branch of science concerned with the structure and development of organisms, and how it can help explain major transitions in evolution and broad patterns of biological diversity.


Sign in / Sign up

Export Citation Format

Share Document