“A Single Multiple Image”:

2021 ◽  
pp. 167-188
Author(s):  
Geoff Bender
Keyword(s):  
Author(s):  
W. Chiu ◽  
M.F. Schmid ◽  
T.-W. Jeng

Cryo-electron microscopy has been developed to the point where one can image thin protein crystals to 3.5 Å resolution. In our study of the crotoxin complex crystal, we can confirm this structural resolution from optical diffractograms of the low dose images. To retrieve high resolution phases from images, we have to include as many unit cells as possible in order to detect the weak signals in the Fourier transforms of the image. Hayward and Stroud proposed to superimpose multiple image areas by combining phase probability distribution functions for each reflection. The reliability of their phase determination was evaluated in terms of a crystallographic “figure of merit”. Grant and co-workers used a different procedure to enhance the signals from multiple image areas by vector summation of the complex structure factors in reciprocal space.


Author(s):  
R Nanmaran ◽  
S Nagarajan ◽  
R Sindhuja ◽  
Garudadri Venkata Sree Charan ◽  
Venkata Sai Kumar Pokala ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1422
Author(s):  
Antonio Masiello

In this paper we present a survey of Fermat metrics and their applications to stationary spacetimes. A Fermat principle for light rays is stated in this class of spacetimes and we present a variational theory for the light rays and a description of the multiple image effect. Some results on variational methods, as Ljusternik-Schnirelmann and Morse Theory are recalled, to give a description of the variational methods used. Other applications of the Fermat metrics concern the global hyperbolicity and the geodesic connectedeness and a characterization of the Sagnac effect in a stationary spacetime. Finally some possible applications to other class of spacetimes are considered.


2021 ◽  
pp. 174702182110097
Author(s):  
Niamh Hunnisett ◽  
Simone Favelle

Unfamiliar face identification is concerningly error prone, especially across changes in viewing conditions. Within-person variability has been shown to improve matching performance for unfamiliar faces, but this has only been demonstrated using images of a front view. In this study, we test whether the advantage of within-person variability from front views extends to matching to target images of a face rotated in view. Participants completed either a simultaneous matching task (Experiment 1) or a sequential matching task (Experiment 2) in which they were tested on their ability to match the identity of a face shown in an array of either one or three ambient front-view images, with a target image shown in front, three-quarter, or profile view. While the effect was stronger in Experiment 2, we found a consistent pattern in match trials across both experiments in that there was a multiple image matching benefit for front, three-quarter, and profile-view targets. We found multiple image effects for match trials only, indicating that providing observers with multiple ambient images confers an advantage for recognising different images of the same identity but not for discriminating between images of different identities. Signal detection measures also indicate a multiple image advantage despite a more liberal response bias for multiple image trials. Our results show that within-person variability information for unfamiliar faces can be generalised across views and can provide insights into the initial processes involved in the representation of familiar faces.


Author(s):  
Xiaoni Sun ◽  
Zhuhong Shao ◽  
Yuanyuan Shang ◽  
Mingxian Liang ◽  
Fengjian Yang

2012 ◽  
Vol 44 (7) ◽  
pp. 2238-2244 ◽  
Author(s):  
Jian-Ji Huang ◽  
Hone-Ene Hwang ◽  
Chun-Yuan Chen ◽  
Ching-Mu Chen

Sign in / Sign up

Export Citation Format

Share Document