The Three Gorges of the Yangtze River

2002 ◽  
pp. 405-423
2014 ◽  
Vol 501-504 ◽  
pp. 2001-2006
Author(s):  
Ya Liu ◽  
Li Zheng ◽  
Cheng Tao Huang ◽  
Zhao Biao Huang ◽  
Lin Liu

After impoundment of the Three Gorges Reservoir, Jingjiang reach, in the middle of the Yangtze River, has gradually shown a series of atypical fluvial features, adversely affecting the maintenance of waterways. Citing the Laijiapu Waterway, a meandering segment in the lower Jingjiang for example, this paper compared the fluvial features of the channel before and after the impoundment, summed up its navigation-obstructing features, and proposed guarding the point bar on the convex bank and channel bar in the widening section as a key to maintaining the stability of the navigation channels.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251015
Author(s):  
Guoliang Zhu ◽  
Yitian Li ◽  
Zhaohua Sun ◽  
Shinjiro Kanae

This work explores the changes in vegetation coverage and submergence time of floodplains along the middle and lower reaches of the Yangtze River (i.e., the Jingjiang River) and the relations between them. As the Three Gorges Dam has been operating for more than 10 years, the original vegetative environment has been greatly altered in this region. The two main aspects of these changes were discovered by analyzing year-end image data from remote sensing satellites using a dimidiate pixel model, based on the normalized difference vegetation index, and by calculating water level and topographic data over a distance of 360 km from 2003–2015. Given that the channels had adjusted laterally, thus exhibiting deeper and broader geometries due to the Three Gorges Dam, 11 floodplains were classified into three groups with distinctive features. The evidence shows that, the floodplains with high elevation have formed steady vegetation areas and could hardly be affected by runoff and usually occupied by humans. The low elevation group has not met the minimal threshold of submerging time for vegetation growth, and no plants were observed so far. Based on the facts summed up from the floodplains with variable elevation, days needed to spot vegetation ranges from 70 to 120 days which happened typically near 2006 and between 2008 and 2010, respectively, and a negative correlation was detected between submergence time and vegetation coverage within a certain range. Thus, floods optimized by the Three Gorges Dam have directly influenced plant growth in the floodplains and may also affect our ability to manage certain types of large floods. Our conclusions may provide a basis for establishing flood criteria to manage the floodplain vegetation and evaluating possible increases in resistance caused by high-flow flooding when these floodplains are submerged.


SIMULATION ◽  
2022 ◽  
pp. 003754972110725
Author(s):  
Yu Zhang ◽  
Hongwei Tian ◽  
Ran Li ◽  
Xiaolei Liang ◽  
Jun Li

As an important project on the golden waterway of the Yangtze River in China, the Three Gorges–Gezhouba Dams (TGGD) plays a pivotal role in the construction of the Yangtze River Economic Belt. To improve the efficiency and safety of ship traffic, some novel navigation regulations have been implemented that change the TGGD operation obviously. For example, a piecewise control strategy proposed in the regulations is applied to control the traffic flow of ships under a sectional manner. With the implementation of these regulations, how to understand the dynamic effects of new changes on TGGD has been an important problem. The purpose of this work is to evaluate the navigation performance of the TGGD via a data- and event-driven hybrid simulation model developed by multi-agent and discrete-event modeling theories. The model simulates the three significant navigable scenarios inherent in the actual operating environment: dry season, wet season, and flood season, reflecting the real situations. The input data come from the statistical analysis of the actual navigation data provided by the Three Gorges Navigation Administration. The validity and reliability of the model are verified by comparing the output results with actual data. Moreover, a set of test experiments are designed to explore the TGGD navigation limit and analyze the key factors that restrict the navigation capacity of the TGGD system. The work is expected to provide a certain decision support for the future cooperative scheduling optimization of the TGGD.


Sign in / Sign up

Export Citation Format

Share Document