From Igloo to Mine Shaft:

Author(s):  
Arn Keeling ◽  
Patricia Boulter
Keyword(s):  
Author(s):  
L.E. Murr ◽  
V. Annamalai

Georgius Agricola in 1556 in his classical book, “De Re Metallica”, mentioned a strange water drawn from a mine shaft near Schmölnitz in Hungary that eroded iron and turned it into copper. This precipitation (or cementation) of copper on iron was employed as a commercial technique for producing copper at the Rio Tinto Mines in Spain in the 16th Century, and it continues today to account for as much as 15 percent of the copper produced by several U.S. copper companies.In addition to the Cu/Fe system, many other similar heterogeneous, electrochemical reactions can occur where ions from solution are reduced to metal on a more electropositive metal surface. In the case of copper precipitation from solution, aluminum is also an interesting system because of economic, environmental (ecological) and energy considerations. In studies of copper cementation on aluminum as an alternative to the historical Cu/Fe system, it was noticed that the two systems (Cu/Fe and Cu/Al) were kinetically very different, and that this difference was due in large part to differences in the structure of the residual, cement-copper deposit.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 664
Author(s):  
Jacek Jakubowski ◽  
Przemysław Fiołek

A mine shaft steelwork is a three-dimensional frame that directs the vertical motion of conveyances in mine shafts. Here, we conduct field and numerical investigations on the stiffness and dynamic properties of these structures. Based on the design documentation of the shaft, materials data, and site inspection, the steelwork’s finite element model, featuring material and geometric non-linearities, was developed in Abaqus. Static load tests of steelwork were carried out in an underground mine shaft. Numerical simulations reflecting the load test conditions showed strong agreement with the in situ measurements. The validated numerical model was used to assess the dynamic characteristics of the structure. Dynamic linear and non-linear analyses delivered the natural frequencies, mode shapes, and structural response to dynamic loads. The current practices and regulations regarding shaft steelwork design and maintenance do not account for the stiffness of guide-to-bunton connections and disregard dynamic factors. Our experimental and numerical investigations show that these connections provide considerable stiffness, which leads to the redistribution and reduction in bending moments and increased stiffness of the construction. The results also show a high dynamic amplification factor. The omission of these features implicates an incorrect assessment of the design loads and can lead to over- or under-sized structures and ultimately to shortened design working life or failure.


2021 ◽  
pp. 51-56
Author(s):  
V. N. Aptukov ◽  
V. V. Tarasov ◽  
V. S. Pestrikova ◽  
O. V. Ivanov

Scenarios of the component arrangement of batching plants in the system of a vertical mine shaft are discussed. The features of operation of batching plants in vertical shafts of potash mines are identified. The actual recorded damages generated in the lining of batching plants in the course of their longterm operation in potash mines are described. The geomechanical researches aimed to determine vertical convergence in batching rooms of mine shafts, as well as for monitoring of crack opening and displacements in sidewalls in the batching chambers are presented. The major results of the full-scale geomechanical observations are reported, and the main causes of fractures in concrete and reinforced concrete lining at junctures of shafts and batching rooms and shaft bins are identified. The set of the engineering solutions implemented for the protection of lining in batching facilities during construction of mine shafts is described, and its efficiency is evaluated. The mathematical modeling is carried out to estimate various negative impacts on deformation and fracture of concrete lining in shafts with regard to the time factor. From the modeling results, the dominant cause of concrete lining damage in batching chambers and in mine shaft is found. Based on the accomplished research results and actual long-term experience of operation of mine shafts, the most favorable factors are determined for the best design choices in construction and long-term maintenance-free operation of batching plants in potash mines of the Upper Kama Potash–Magnesium Salt Deposit.


1990 ◽  
Author(s):  
L B Geller ◽  
D Poffenroth ◽  
J E Udd ◽  
D Hutchinson
Keyword(s):  

2020 ◽  
Vol 201 ◽  
pp. 01007
Author(s):  
Mikhail Zhuravkov ◽  
Sergey Hvesenya ◽  
Siarhei Lapatsin

The results of the durability analysis of a complex underground structure and surrounding multilayered rock massif are presented. The research is conducted based on an applied stress-strain state problem for a salt rock massif in the vicinity of an underground cavity of a large cross-section which is in conjunction with a mine shaft. The main aim of the research is to perform a comparative analysis of various mathematical models of the creep process. The problem is solved using finite element method to achieve this goal. Regularity in the development of deformation processes of the enclosing rock massif is established as a result of the study. According to this regularity, both primary creep and primary-secondary creep models show that the main increase of creep deformations occurs during a short initial time period after which creep strain rate decreases sharply.


1971 ◽  
Vol 8 (02) ◽  
pp. 145-158
Author(s):  
Raymond Kaufman

The paper discusses the latest techniques proposed for mining minerals from the deep ocean. Deep ocean is defined as the sea beyond the continental shelf, particularly areas of the sea floor exceeding 1200 ft in depth. The three principal deep-ocean minerals having economic potential in the immediate future are identified. Four recently proposed advanced deep-ocean mining concepts are presented. Use of the air-lift pump as a viable mining method is discussed and a large-scale air-lift pump experiment conducted in an abandoned mine shaft at Galax, Virginia is described. The principal features of the conversion of a small C1-M-AV1 type cargo ship to a deep-ocean mining prototype vessel, RV Deepsea Miner, is outlined.


Sign in / Sign up

Export Citation Format

Share Document