184 IDENTIFICATION OF TWIST, A BHLH TRANSCRIPTION FACTOR, HIGHLY EXPRESSED IN HUMAN MEDULLOBLASTOMA AND CHARACTERIZATION OF AN IN VITRO MODEL TO EXAMINE POTENTIAL INTERACTIONS WITH SONIC HEDGEHOG SIGNALING

2005 ◽  
Vol 53 (1) ◽  
pp. S110.3-S110
Author(s):  
J. T. Lee ◽  
R. G. Oxford ◽  
M. C. Elias ◽  
R. G. Ellenbogen ◽  
M. S. Bobola ◽  
...  
Development ◽  
2001 ◽  
Vol 128 (24) ◽  
pp. 4993-5004
Author(s):  
Nathalie Spassky ◽  
Katharina Heydon ◽  
Arnaud Mangatal ◽  
Alexandar Jankovski ◽  
Christelle Olivier ◽  
...  

Most studies on the origin of oligodendrocyte lineage have been performed in the spinal cord. By contrast, molecular mechanisms that regulate the appearance of the oligodendroglial lineage in the brain have not yet attracted much attention. We provide evidence for three distinct sources of oligodendrocytes in the mouse telencephalon. In addition to two subpallial ventricular foci, the anterior entopeduncular area and the medial ganglionic eminence, the rostral telencephalon also gives rise to oligodendrocytes. We show that oligodendrocytes in the olfactory bulb are generated within the rostral pallium from ventricular progenitors characterized by the expression of Plp. We provide evidence that these Plp oligodendrocyte progenitors do not depend on signal transduction mediated by platelet-derived growth factor receptors (PDGFRs), and therefore propose that they belong to a different lineage than the PDGFRα-expressing progenitors. Moreover, induction of oligodendrocytes in the telencephalon is dependent on sonic hedgehog signaling, as in the spinal cord. In all these telencephalic ventricular territories, oligodendrocyte progenitors were detected at about the same developmental stage as in the spinal cord. However, both in vivo and in vitro, the differentiation into O4-positive pre-oligodendrocytes was postponed by 4-5 days in the telencephalon in comparison with the spinal cord. This delay between determination and differentiation appears to be intrinsic to telencephalic oligodendrocytes, as it was not shortened by diffusible or cell-cell contact factors present in the spinal cord.


Author(s):  
Mathieu Vinken ◽  
Michaël Maes ◽  
Sara Crespo Yanguas ◽  
Joost Willebrords ◽  
Tamara Vanhaecke ◽  
...  

2021 ◽  
Vol 350 ◽  
pp. S129-S130
Author(s):  
R Magny ◽  
K. Kessal ◽  
A. Regazzetti ◽  
O. Laprévote ◽  
C. Baudouin ◽  
...  

2016 ◽  
Vol 133 ◽  
pp. 100-112 ◽  
Author(s):  
Victor Llombart ◽  
Teresa García-Berrocoso ◽  
Joan Josep Bech-Serra ◽  
Alba Simats ◽  
Alejandro Bustamante ◽  
...  

2020 ◽  
Vol 12 (10) ◽  
pp. 1002-1007
Author(s):  
Sarah Johnson ◽  
Ray McCarthy ◽  
Brian Fahy ◽  
Oana Madalina Mereuta ◽  
Seán Fitzgerald ◽  
...  

​BackgroundCalcified cerebral emboli (CCEs) are a rare cause of acute ischemic stroke (AIS) and are frequently associated with poor outcomes. The presence of dense calcified material enables reliable identification of CCEs using non-contrast CT. However, recanalization rates with the available mechanical thrombectomy (MT) devices remain low.ObjectiveTo recreate a large vessel occlusion involving a CCE using an in vitro silicone model of the intracranial vessels and to demonstrate the feasability of this model to test different endovascular strategies to recanalize an occlusion of the M1 segment of the middle cerebral artery (MCA).​MethodsAn in vitro model was developed to evaluate different endovascular treatment approaches using contemporary devices in the M1 segment of the MCA. The in vitro model consisted of a CCE analog placed in a silicone neurovascular model. Development of an appropriate CCE analog was based on characterization of human calcified tissues that represent likely sources of CCEs. Feasibility of the model was demonstrated in a small number of MT devices using four common procedural techniques.​ResultsCCE analogs were developed with similar mechanical behavior to that of ex vivo calcified material. The in vitro model was evaluated with various MT techniques and devices to show feasibility of the model. In this limited evaluation, the most successful retrieval approach was performed with a stent retriever combined with local aspiration through a distal access catheter, and importantly, with flow arrest and dual aspiration using a balloon guide catheter.​ConclusionCharacterization of calcified tissues, which are likely sources of CCEs, has shown that CCEs are considerably stiffer than thrombus. This highlights the need for a different in vitro AIS model for CCEs than those used for thromboemboli. Consequentially, an in vitro AIS model representative of a CCE occlusion in the M1 segment of the MCA has been developed.


Sign in / Sign up

Export Citation Format

Share Document