PERFORMANCE IMPROVEMENT OF DIRECT TORQUE CONTROL FOR SWITCHED RELUCTANCE MOTOR USING NEURO-FUZZY CONTROLLER

2010 ◽  
Vol 38 (3) ◽  
Author(s):  
P. Veena ◽  
R. Jeyabharath ◽  
M. Rajaram
2007 ◽  
Vol 4 (1) ◽  
pp. 23-34 ◽  
Author(s):  
Ahmed Tahour ◽  
Hamza Abid ◽  
Ghani Aissaoui

This paper presents an application of adaptive neuro-fuzzy (ANFIS) control for switched reluctance motor (SRM) speed. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. An adaptive neuro-fuzzy controller of the motor speed is then designed and simulated. Digital simulation results show that the designed ANFIS speed controller realizes a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI).


Author(s):  
Reyad Abdelfadil ◽  
László Számel

The electrical drive systems utilized in Electric Vehicles (EVs) applications must be reliable and high performance. To providing these specifications, it is essential to design high-efficiency electric motors and develop high-performance controllers. This study introduces direct torque control of Switched Reluctance Motor (SRM) for electric vehicle applications using Model Predictive Control (MPC) technique. The direct torque control using MPC is proposed to maintain the motor torque and motor speed to tracking desired signals with a satisfactory response. In this study, the MPC algorithm was programmed in C- language, and the simulation tests were performed using a non-linear model of 6/4 - 60 kW SRM that is fed with the symmetrical converter. The proposed controller was tested under different load conditions to verify the robustness of the controller, as well as at variable speeds to investigate the tracking performance. Thanks to the proposed method, the SRM torque ripples, stator copper losses, and average switching frequency of the power converter can reduce effectively due to applying a cost function that combines multiple objectives. The obtained outcomes show the effectiveness of the suggested approach compared to conventional direct torque control techniques.


2012 ◽  
Vol 44 (1) ◽  
pp. 20-25 ◽  
Author(s):  
Wafaa A.Arakat ◽  
Amira Y. Haikal ◽  
Ayman H. Kassem

Author(s):  
Hafeezul Haq ◽  
Halil Ibrahim Okumus

The switched reluctance motor gains a significant response in industries in the past decade because of its ruggedness, high torque to inertia ratio, simple structure, high reliability and inexpensive manufacturing capability. These features make it a suitable candidate for various applications and electric drives. However, In the field of electric drives a switched reluctance motor drive is having doubly salient structure thus it inherently produces high torque ripples and acoustic noise problems and its controlling difficulties that is an undesirable effect for vehicle applications, especially at low speed. The main objective of this paper is to minimize the torque ripples and to control its speed. In this paper a fuzzy logic controller based direct torque control method is used for speed controlling and for controlling of torque ripples of the 8/6 SRM drive. It’s modelling and application of fuzzy logic controller based direct torque control method is done in MATLAB/SIMULINK environment.


Sign in / Sign up

Export Citation Format

Share Document