DESIGN AND CONTROL OF A VARIABLE-RADIUS PULLEY-BASED PNEUMATIC ARTIFICIAL MUSCLE ACTUATION SYSTEM

Author(s):  
Xiangrong Shen ◽  
Garrett Waycaster ◽  
Sai-Kit Wu
Author(s):  
Garrett Waycaster ◽  
Sai-Kit Wu ◽  
Tad Driver ◽  
Xiangrong Shen

This paper describes the design and control of a compact and flexible pneumatic artificial muscle (PAM) actuation system for bio-robotic systems. The entire paper is divided into two parts, with the first part covering the mechanism design and the second part covering the corresponding controller design. This novel system presented in this part incorporates two new features, including a variable-radius pulley based PAM actuation mechanism, and a spring-return mechanism to replace the PAM in the “weak” direction. With the pulley radius as a function of the joint angle, this new feature enables the designer to freely modulate the shape of the torque curve, and thus achieves a significantly higher flexibility than the traditional configuration. The other new feature, the spring-return mechanism, is inspired by the fact that a large number of bio-robotic systems require a significantly larger torque in one direction than the other.


Author(s):  
Sai-Kit Wu ◽  
Garrett Waycaster ◽  
Tad Driver ◽  
Xiangrong Shen

A robust control approach is presented in this part of the paper, which provides an effective servo control for the novel PAM actuation system presented in Part I. Control of PAM actuation systems is generally considered as a challenging topic, due primarily to the highly nonlinear nature of such system. With the introduction of new design features (variable-radius pulley and spring-return mechanism), the new PAM actuation system involves additional nonlinearities (e.g. the nonlinear relationship between the joint angle and the actuator length), which further increasing the control difficulty. To address this issue, a nonlinear model based approach is developed. The foundation of this approach is a dynamic model of the new actuation system, which covers the major nonlinear processes in the system, including the load dynamics, force generation from internal pressure, pressure dynamics, and mass flow regulation with servo valve. Based on this nonlinear model, a sliding mode control approach is developed, which provides a robust control of the joint motion in the presence of model uncertainties and disturbances. This control was implemented on an experimental setup, and the effectiveness of the controller demonstrated by sinusoidal tracking at different frequencies.


2014 ◽  
Vol 23 (9) ◽  
pp. 095014 ◽  
Author(s):  
Benjamin K S Woods ◽  
Curt S Kothera ◽  
Gang Wang ◽  
Norman M Wereley

2008 ◽  
Vol 2008.83 (0) ◽  
pp. _2-4_
Author(s):  
Nobutaka TSUJIUCHI ◽  
Takayuki KOIZUMI ◽  
Hiroto KAN ◽  
Shinya NISHINO ◽  
Tatsuwo KUDAWARA ◽  
...  

2011 ◽  
Vol 2011 (0) ◽  
pp. _2A2-J03_1-_2A2-J03_4
Author(s):  
Nobutaka TSUJIUCHI ◽  
Takayuki KOIZUMI ◽  
Tomoyuki MIZUNO ◽  
Masashi KIMURA ◽  
Hiroyuki KOJIMA ◽  
...  

Author(s):  
Garrett Waycaster ◽  
Sai-Kit Wu ◽  
Xiangrong Shen

This paper describes the mechanical design and control approach for an above-knee (AK) prosthesis actuated by pneumatic artificial muscle. Pneumatic artificial muscle (PAM) affords great potential in prosthetics, since this type of actuator features a high power density, and similar characteristics to human muscles. However, there is no application of PAM in AK prosthetics in existing literature to the best knowledge of the authors. In this paper, a design of the prosthesis is presented, which provides sufficient actuation torque for the knee joint in energy consuming locomotive functions such as fast walking and stair climbing. The corresponding control approach is also presented, which combines an impedance-based locomotive controller with a lower-level sliding-mode torque control approach. Experiments on the proposed AK prosthesis have also been conducted to demonstrate the ability to mimic normal gait characteristics.


Sign in / Sign up

Export Citation Format

Share Document