Optimized Power Generation in Offshore Wind Parks

Author(s):  
Julio de Oliveira Filho ◽  
Zoltan Papp
2009 ◽  
Vol 1216 ◽  
Author(s):  
Masataka Murahara ◽  
Kazuichi Seki ◽  
Yuji Sato ◽  
Etsuo Fujiwara

AbstractSodium metal reacts with water explosively to generate hydrogen. Therefore, sodium metal can have an important role as a hydrogen storage material. Seawater contains water most and sodium second. Seawater is electrolyzed by offshore wind or solar cell power generation to produce sodium; which is transported to a thermoelectric power plant on land and then is reacted with water to produce hydrogen for electric power generation. Sodium hydroxide, a by-product, is used as a raw material for soda industries. In the sodium production process, many by-products such as fresh water, magnesium, sodium hydroxide, hydrochloric acid, and sulfuric acid are produced. Thus, sodium metal is an economical, renewable, and sustainable fuel that discharges neither CO2 nor radioactivity.


Aquaculture ◽  
2021 ◽  
pp. 737611
Author(s):  
Cheng-Ting Huang ◽  
Farok Afero ◽  
Chun-Wei Hung ◽  
Bo-Ying Chen ◽  
Fan-Hua Nan ◽  
...  

2013 ◽  
Vol 35 ◽  
pp. 137-147 ◽  
Author(s):  
Brede Hagen ◽  
Ingve Simonsen ◽  
Matthias Hofmann ◽  
Michael Muskulus

2004 ◽  
Vol 12 ◽  
pp. 227-232
Author(s):  
Susumu SHIMADA ◽  
Teruo OHSAWA ◽  
Kazuhito FUKAO ◽  
Atsushi HASHIMOTO ◽  
Tomokazu MURAKAMI ◽  
...  

Author(s):  
Tomoaki Utsunomiya ◽  
Shigeo Yoshida ◽  
Soichiro Kiyoki ◽  
Iku Sato ◽  
Shigesuke Ishida

In this paper, dynamic response of a Floating Offshore Wind Turbine (FOWT) with spar-type floating foundation at power generation is presented. The FOWT mounts a 100kW wind turbine of down-wind type, with the rotor’s diameter of 22m and a hub-height of 23.3m. The floating foundation consists of PC-steel hybrid spar. The upper part is made of steel whereas the lower part made of prestressed concrete segments. The FOWT was installed at the site about 1km offshore from Kabashima Island, Goto city, Nagasaki prefecture on June 11th, 2012. Since then, the field measurement had been made until its removal in June 2013. In this paper, the dynamic behavior during the power generation is presented, where the comparison with the numerical simulation by aero-hydro-servo-mooring dynamics coupled program is made.


2020 ◽  
Vol 20 (2) ◽  
pp. 143-153
Author(s):  
Nguyen Xuan Tung ◽  
Do Huy Cuong ◽  
Bui Thi Bao Anh ◽  
Nguyen Thi Nhan ◽  
Tran Quang Son

Since the East Vietnam Sea has an advantageous geographical location and rich natural resources, we can develop and manage islands and reefs in this region reasonably to declare national sovereignty. Based on 1096 scenes of QuikSCAT wind data of 2006–2009, wind power density at 10 m hight is calculated to evaluate wind energy resources of the East Vietnam Sea. With a combination of wind power density at 70 m hight calculated according to the power law of wind energy profile and reef flats extracted from 35 scenes of Landsat ETM+ images, installed wind power capacity of every island or reef is estimated to evaluate wind power generation of the East Vietnam Sea. We found that the wind power density ranges from levels 4–7, so that the wind energy can be well applied to wind power generation. The wind power density takes on a gradually increasing trend in seasons. Specifically, the wind power density is lower in spring and summer, whereas it is higher in autumn and winter. Among islands and reefs in the East Vietnam Sea, the installed wind power capacity of Hoang Sa archipelago is highest in general, the installed wind power capacity of Truong Sa archipelago is at the third level. The installed wind power capacity of Discovery Reef, Bombay Reef, Tree island, Lincoln island, Woody Island of Hoang Sa archipelago and Mariveles Reef, Ladd Reef, Petley Reef, Cornwallis South Reef of Truong Sa archipelago is relatively high, and wind power generation should be developed on these islands first.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 12
Author(s):  
Arthur Leandro Guerra Pires ◽  
Paulo Rotella Junior ◽  
Sandra Naomi Morioka ◽  
Luiz Célio Souza Rocha ◽  
Ivan Bolis

Offshore wind energy has been identified as one of the most promising and increasingly attractive sources of energy. This technology offers a long-term power-generation source, less environmental impact, and fewer physical restrictions. However, given the complexity of this technology, economic feasibility studies are essential. Thus, this study aims to identify the main trends and criteria or the methods used in the economic feasibility studies of offshore wind energy, providing a review of the state of the art in this literature. For this, a Systematic Literature Review was carried out. The article shows the growing interest in offshore wind power generation and highlights how recently the interest in the studies that assess the technical–economic feasibility of this source has grown; it presents the main milestones of the topic. Based on a structured literature review, this article identifies the main trends in this topic: (i) wind farms, (ii) risk, (iii) floating offshore wind farms, (iv) decommissioning and repowering, (v) net present value, (vi) life cycle cost, and (vii) multi-criteria decision-making; it provides a broad view of the methodological possibilities and specificities for investors and researchers interested in conducting studies on the economic feasibility of offshore wind generation. In addition, finally, a research agenda is proposed.


Sign in / Sign up

Export Citation Format

Share Document