scholarly journals Full-Field Observation of Anomalous Deformation Behavior in SUS304 Stainless Steel at Low Strain Rates

2007 ◽  
Vol 71 (8) ◽  
pp. 620-628 ◽  
Author(s):  
Manabu Tominaga ◽  
Satoru Toyooka ◽  
Hirofumi Kadono
Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5259
Author(s):  
Krzysztof Żaba ◽  
Tomasz Trzepieciński ◽  
Stanislav Rusz ◽  
Sandra Puchlerska ◽  
Maciej Balcerzak

This article presents a study on the effect of strain rate, specimen orientation, and plastic strain on the value and distribution of the temperature of dog-bone 1 mm-thick specimens during their deformation in uniaxial tensile tests. Full-field image correlation and infrared thermography techniques were used. A titanium-stabilised austenitic 321 stainless steel was used as test materials. The dog-bone specimens used for uniaxial tensile tests were cut along the sheet metal rolling direction and three strain rates were considered: 4 × 10−3 s−1, 8 × 10−3 s−1 and 16 × 10−3 s−1. It was found that increasing the strain rate resulted in the intensification of heat generation. High-quality regression models (Ra > 0.9) developed for the austenitic 321 steel revealed that sample orientation does not play a significant role in the heat generation when the sample is plastically deformed. It was found that at the moment of formation of a necking at the highest strain rate, the maximum sample temperature increased more than four times compared to the initial temperature. A synergistic effect of the strain hardening exponent and yield stress revealed that heat is generated more rapidly towards small values of strain hardening exponent and yield stress.


2014 ◽  
Vol 0 (0) ◽  
Author(s):  
Y. Cao ◽  
H.S. Di ◽  
R.D.K. Misra

AbstractHot deformation behavior of AISI 420 stainless steel was studied under hot compression tests in the temperature range of 950 to 1150 °C and strain rates of 0.01 s


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Sign in / Sign up

Export Citation Format

Share Document