scholarly journals Relation between Generation Rate and Specific Surface Area of Ultrafine Metal Particles Produced by the Ar-H2 Arc Plasma Method

1999 ◽  
Vol 63 (2) ◽  
pp. 230-236
Author(s):  
Katuo Saitou
2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Hongxia Qiao ◽  
Zhiqiang Wei ◽  
Hua Yang ◽  
Lin Zhu ◽  
Xiaoyan Yan

NiO nanoparticles with average particle size of 25 nm were successfully prepared by anodic arc plasma method. The composition, morphology, crystal microstructure, specific surface area, infrared spectra, and particle size distribution of product were analyzed by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED), Fourier transform infrared (FTIR) spectrum, and Brunauer-Emmett-Teller (BET)N2adsorption. The experiment results show that the NiO nanoparticles are bcc structure with spherical shape and well dispersed, the particle size distribution ranging from 15 to 45 nm with the average particle size is about 25 nm, and the specific surface area is 33 m2/g. The infrared absorption band of NiO nanoparticles shows blue shifts compared with that of bulk NiO.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Mingru Zhou ◽  
Zhiqiang Wei ◽  
Hongxia Qiao ◽  
Lin Zhu ◽  
Hua Yang ◽  
...  

In the protecting inert gas, silver nanoparticles were successfully prepared by confined arc plasma method. The particle size, microstructure, and morphology of the particles by this process were characterized via X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED). TheN2absorption-desorption isotherms of the samples were measured by using the static volumetric absorption analyzer, the pore structure of the sample was calculated by Barrett-Joyner-Halenda (BJH) academic model, and the specific surface area was calculated from Brunauer-Emmett-Teller (BET) adsorption equation. The experiment results indicate that the crystal structure of the samples is face-centered cubic (FCC) structure the same as the bulk materials, the particle size distribution ranging from 5 to 65 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results. The specific surface area is 23.81 m2/g, pore volumes are 0.09 cm3/g, and average pore diameter is 18.7 nm.


DECHLORINATION OF CARBON TETRACHLORIDE BY NANOSCALE IRON PARTICLES IN AQUEOUS SOLUTION HSING-LUNG LIEN WEI-XIAN ZHANG Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA 18015 INTRODUCTION Recently, a method for the generation of very small (nanoscale) bimetallic particles has been reported [1,2]. These nanoscale metal particles typically have a diameter on the order of 1-100 nm and feature 0.06% by weight of palladium deposited on the surface of iron. Advantages of the nanoscale bimetallic system for treatment of chlorinated organic pollutants include: (1) High specific surface area. The nanoscale metal particles have a specific surface area around 35 m2/g. Tens to hundreds times higher than those of the commercial grade iron particles (used in conventional iron walls). (2) High surface reactivity. For example, values of surface-area-normalized rate coefficient (KSA) for the transformation of chlorinated ethylenes were about one to two-orders of magnitude higher than those reported in the literature for commercial grade iron particles [3]. Due to their small particle size and high reactivity, the nanoscale metal particles may be useful in a wide array of environmental applications. In the aqueous phase, the nanoscale iron particles remain suspended, almost like a homogenous solution. Theoretical calculations indicate that, for colloidal particles less than about 1 micrometer, gravity of the metal particles is insignificant to influence the particle movement. Brownian motion (thermal movement) tends to dominate the transport process in groundwater. Thus, we believe that the metal particles could be injected directly into contaminated soils, sediments and aquifers for in situ remediation of chlorinated hydrocarbons, offering a cost-effective alternative to such conventional technologies as pump-and-treat, air sparging or even conventional iron reactive walls. Design, construction and operation of such injectable systems should be reasonably straightforward.


Sign in / Sign up

Export Citation Format

Share Document