scholarly journals Exaggerated Glucagon-Like Peptide 1 Response Is Important for Improved β-Cell Function and Glucose Tolerance After Roux-en-Y Gastric Bypass in Patients With Type 2 Diabetes

Diabetes ◽  
2013 ◽  
Vol 62 (9) ◽  
pp. 3044-3052 ◽  
Author(s):  
Nils B. Jørgensen ◽  
Carsten Dirksen ◽  
Kirstine N. Bojsen-Møller ◽  
Siv H. Jacobsen ◽  
Dorte Worm ◽  
...  
2008 ◽  
Vol 158 (6) ◽  
pp. 773-784 ◽  
Author(s):  
Luc F Van Gaal ◽  
Stephen W Gutkin ◽  
Michael A Nauck

Type 2 diabetes mellitus is associated with progressive decreases in pancreatic β-cell function. Most patients thus require increasingly intensive treatment, including oral combination therapies followed by insulin. Fear of hypoglycemia is a potential barrier to treatment adherence and glycemic control, while weight gain can exacerbate hyperglycemia or insulin resistance. Administration of insulin can roughly mimic physiologic insulin secretion but does not address underlying pathophysiology. Glucagon-like peptide 1 (GLP-1) is an incretin hormone released by the gut in response to meal intake that helps to maintain glucose homeostasis through coordinated effects on islet α- and β-cells, inhibiting glucagon output, and stimulating insulin secretion in a glucose-dependent manner. Biological effects of GLP-1 include slowing gastric emptying and decreasing appetite. Incretin mimetics (GLP-1 receptor agonists with more suitable pharmacokinetic properties versus GLP-1) significantly lower hemoglobin A1c, body weight, and postprandial glucose excursions in humans and significantly improve β-cell function in vivo (animal data). These novel incretin-based therapies offer the potential to reduce body weight or prevent weight gain, although the durability of these effects and their potential long-term benefits need to be studied further. This article reviews recent clinical trials comparing therapy with the incretin mimetic exenatide to insulin in patients with oral treatment failure, identifies factors consistent with the use of each treatment, and delineates areas for future research.


2009 ◽  
Vol 05 (0) ◽  
pp. 38
Author(s):  
Chantal Mathieu ◽  

Type 2 diabetes is a progressive disease characterised by deteriorating β-cell function and glycaemic control. To counter this, affected individuals require regular intensification of their antidiabetes treatments to provide appropriate metabolic control. However, current treatment options – such as sulphonylureas, thiazolidinediones and insulins – induce weight gain, which can reduce patient acceptance and/or compliance with treatment and may have significant health implications. In addition, many of the antidiabetic therapies raise the risk of hypoglycaemic episodes. Therefore, patients, physicians and healthcare providers are looking for new therapeutic options to address this large and growing burden of diabetes. Incretin-based therapies – including glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors – are becoming a popular treatment option for patients with type 2 diabetes because they offer many benefits compared with other antidiabetic therapies. First, incretin-based therapies are associated with significant reductions in glycated haemoglobin (HbA1c) with a low inherent risk of hypoglycaemic events. In addition, GLP-1 receptor agonists are associated with reductions in bodyweight and systolic blood pressure. Incretin-based therapies such as liraglutide also offer the potential to improve β-cell function, an important underlying mechanism of type 2 diabetes.


2009 ◽  
Vol 75 (6) ◽  
pp. 498-503 ◽  
Author(s):  
Edward Lin ◽  
S. Scott Davis ◽  
Jahnavi Srinivasan ◽  
John F. Sweeney ◽  
Thomas R. Ziegler ◽  
...  

Resolution of Type-2 diabetes mellitus (DM) after weight loss surgery is well documented, but the mechanism is elusive. We evaluated the glucose-insulin metabolism of patients undergoing a Roux-en-Y gastric bypass (RYGB) using the intravenous glucose tolerance test (IVGTT) and compared it with patients who underwent laparoscopic adjustable gastric band (AB) placement. Thirty-one female patients (age range, 20 to 50 years; body mass index, 47.2 kg/m2) underwent RYGB. Nine female patients underwent AB placement and served as control subjects. All patients underwent IVGTT at baseline and 1 month and 6 months after surgery. Thirteen patients undergoing RYGB and one patient undergoing AB exhibited impaired glucose tolerance or DM defined by the American Diabetes Association. By 6 months post surgery, diabetes was resolved in all but one patient undergoing RYGB but not in the patient undergoing AB. Patients with diabetes undergoing RYGB demonstrated increased insulin secretion and β-cell responsiveness 1 month after surgery and continued this trend up to 6 months, whereas none of the patients undergoing AB had changes in β-cell function. Both patients undergoing RYGB and those undergoing AB demonstrated significant weight loss (34.6 and 35.0 kg/m2, respectively) and improved insulin sensitivity at 6 months. RYGB ameliorates DM resolution in two phases: 1) early augmentation of beta cell function at 1 month; and 2) attenuation of peripheral insulin resistance at 6 months. Patients undergoing AB only exhibited reduction in peripheral insulin resistance at 6 months but no changes in insulin secretion.


Sign in / Sign up

Export Citation Format

Share Document