248-LB: Deficiency of APPL1 in Macrophages Triggers Adipose Tissue Inflammation and Insulin Resistance by Potentiating NLRP3 Inflammasome Activation

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 248-LB ◽  
Author(s):  
KELVIN K.L. WU ◽  
AIMIN XU ◽  
KENNETH K. CHENG
2014 ◽  
Vol 96 (6) ◽  
pp. 1087-1100 ◽  
Author(s):  
Hiroe Honda ◽  
Yoshinori Nagai ◽  
Takayuki Matsunaga ◽  
Naoki Okamoto ◽  
Yasuharu Watanabe ◽  
...  

2017 ◽  
Vol 235 (3) ◽  
pp. 179-191 ◽  
Author(s):  
Tsutomu Wada ◽  
Akari Ishikawa ◽  
Eri Watanabe ◽  
Yuto Nakamura ◽  
Yusuke Aruga ◽  
...  

Obesity-associated activation of the renin-angiotensin-aldosterone system is implicated in the pathogenesis of insulin resistance; however, influences of mineralocorticoid receptor (MR) inhibition remain unclear. Therefore, we aimed to clarify the anti-inflammatory mechanisms of MR inhibition using eplerenone, a selective MR antagonist, in C57BL/6 mice fed a high-fat diet (HFD) for 12 weeks. Eplerenone prevented excessive body weight gain and fat accumulation, ameliorated glucose intolerance and insulin resistance and enhanced energy metabolism. In the epididymal white adipose tissue (eWAT), eplerenone prevented obesity-induced accumulation of F4/80+CD11c+CD206−-M1-adipose tissue macrophage (ATM) and reduction of F4/80+CD11c−CD206+-M2-ATM. Interestingly, M1-macrophage exhibited lower expression levels of MR, compared with M2-macrophage, in the ATM of eWAT and in vitro-polarized bone marrow-derived macrophages (BMDM). Importantly, eplerenone and MR knockdown attenuated the increase in the expression levels of proIl1b, Il6 and Tnfa, in the eWAT and liver of HFD-fed mice and LPS-stimulated BMDM. Moreover, eplerenone suppressed IL1b secretion from eWAT of HFD-fed mice. To reveal the anti-inflammatory mechanism, we investigated the involvement of NLRP3-inflammasome activation, a key process of IL1b overproduction. Eplerenone suppressed the expression of the inflammasome components, Nlrp3 and Caspase1, in the eWAT and liver. Concerning the second triggering factors, ROS production and ATP- and nigericin-induced IL1b secretion were suppressed by eplerenone in the LPS-primed BMDM. These results indicate that eplerenone inhibited both the priming and triggering signals that promote NLRP3-inflammasome activation. Therefore, we consider MR to be a crucial target to prevent metabolic disorders by suppressing inflammasome-mediated chronic inflammation in the adipose tissue and liver under obese conditions.


Author(s):  
Kaiser Wani ◽  
Hind AlHarthi ◽  
Amani Alghamdi ◽  
Shaun Sabico ◽  
Nasser M. Al-Daghri

NLRP3 inflammasome is one of the multimeric protein complexes of the nucleotide-binding domain, leucine-rich repeat (NLR)-containing pyrin and HIN domain family (PYHIN). When activated, NLRP3 inflammasome triggers the release of pro-inflammatory interleukins (IL)-1β and IL-18, an essential step in innate immune response; however, defective checkpoints in inflammasome activation may lead to autoimmune, autoinflammatory, and metabolic disorders. Among the consequences of NLRP3 inflammasome activation is systemic chronic low-grade inflammation, a cardinal feature of obesity and insulin resistance. Understanding the mechanisms involved in the regulation of NLRP3 inflammasome in adipose tissue may help in the development of specific inhibitors for the treatment and prevention of obesity-mediated metabolic diseases. In this narrative review, the current understanding of NLRP3 inflammasome activation and regulation is highlighted, including its putative roles in adipose tissue dysfunction and insulin resistance. Specific inhibitors of NLRP3 inflammasome activation which can potentially be used to treat metabolic disorders are also discussed.


Cytokine ◽  
2015 ◽  
Vol 75 (2) ◽  
pp. 280-290 ◽  
Author(s):  
Dov B. Ballak ◽  
Rinke Stienstra ◽  
Cees J. Tack ◽  
Charles A. Dinarello ◽  
Janna A. van Diepen

Author(s):  
Charmaine S. Tam ◽  
Leanne M. Redman

AbstractObesity is characterized by a state of chronic low-grade inflammation due to increased immune cells, specifically infiltrated macrophages into adipose tissue, which in turn secrete a range of proinflammatory mediators. This nonselective low-grade inflammation of adipose tissue is systemic in nature and can impair insulin signaling pathways, thus, increasing the risk of developing insulin resistance and type 2 diabetes. The aim of this review is to provide an update on clinical studies examining the role of adipose tissue in the development of obesity-associated complications in humans. We will discuss adipose tissue inflammation during different scenarios of energy imbalance and metabolic dysfunction including obesity and overfeeding, weight loss by calorie restriction or bariatric surgery, and conditions of insulin resistance (diabetes, polycystic ovarian syndrome).


Diabetes ◽  
2016 ◽  
Vol 65 (9) ◽  
pp. 2624-2638 ◽  
Author(s):  
Mira Ham ◽  
Sung Sik Choe ◽  
Kyung Cheul Shin ◽  
Goun Choi ◽  
Ji-Won Kim ◽  
...  

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Kyung Cheul Shin ◽  
Injae Hwang ◽  
Sung Sik Choe ◽  
Jeu Park ◽  
Yul Ji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document