scholarly journals Statement of Retraction. Matilde Caruso, Claudia Miele, Andrea Oliva, Gerolama Condorelli, Francesco Oriente, Gabriele Riccardi, Brunella Capaldo, Francesca Fiory, Domenico Accili, Pietro Formisano, and Francesco Beguinot. The IR1152 Mutant Insulin Receptor Selectively Impairs Insulin Action in Skeletal Muscle but Not in Liver. Diabetes 2000;49:1194–1202. DOI: 10.2337/diabetes.49.7.1194. PMID: 10909978

Diabetes ◽  
2019 ◽  
Vol 68 (2) ◽  
pp. 464.1-464
Author(s):  
Diabetes ◽  
2000 ◽  
Vol 49 (7) ◽  
pp. 1194-1202 ◽  
Author(s):  
M Caruso ◽  
C Miele ◽  
A Oliva ◽  
G Condorelli ◽  
F Oriente ◽  
...  

1987 ◽  
Vol 262 (30) ◽  
pp. 14663-14671 ◽  
Author(s):  
D A McClain ◽  
H Maegawa ◽  
J Lee ◽  
T J Dull ◽  
A Ulrich ◽  
...  

2008 ◽  
Vol 22 (12) ◽  
pp. 2729-2740 ◽  
Author(s):  
Cora Weigert ◽  
Matthias Kron ◽  
Hubert Kalbacher ◽  
Ann Kathrin Pohl ◽  
Heike Runge ◽  
...  

Abstract Transduction of the insulin signal is mediated by multisite Tyr and Ser/Thr phosphorylation of the insulin receptor substrates (IRSs). Previous studies on the function of single-site phosphorylation, particularly phosphorylation of Ser-302, -307, and -318 of IRS-1, showed attenuating as well as enhancing effects on insulin action. In this study we investigated a possible cross talk of these opposedly acting serine residues in insulin-stimulated skeletal muscle cells by monitoring phosphorylation kinetics, and applying loss of function, gain of function, and combination mutants of IRS-1. The phosphorylation at Ser-302 was rapid and transient, followed first by Ser-318 phosphorylation and later by phosphorylation of Ser-307, which remained elevated for 120 min. Mutation of Ser-302 to alanine clearly reduced the subsequent protein kinase C-ζ-mediated Ser-318 phosphorylation. The Ser-307 phosphorylation was independent of Ser-302 and/or Ser-318 phosphorylation status. The functional consequences of these phosphorylation patterns were studied by the expression of IRS-1 mutants. The E302A307E318 mutant simulating the early phosphorylation pattern resulted in a significant increase in Akt and glycogen synthase kinase 3 phosphorylation. Furthermore, glucose uptake was enhanced. Because the down-regulation of the insulin signal was not affected, this phosphorylation pattern seems to be involved in the enhancement but not in the termination of the insulin signal. This enhancing effect was completely absent when Ser-302 was unphosphorylated and Ser-307 was phosphorylated as simulated by the A302E307E318 mutant. Phospho-Ser-318, sequentially phosphorylated at least by protein kinase C-ζ and a mammalian target of rapamycin/raptor-dependent kinase, was part of the positive as well as of the subsequent negative phosphorylation pattern. Thus we conclude that insulin stimulation temporally generates different phosphorylation statuses of the same residues that exert different functions in insulin signaling.


Endocrinology ◽  
1999 ◽  
Vol 140 (9) ◽  
pp. 4244-4250 ◽  
Author(s):  
Denis Furling ◽  
André Marette ◽  
Jack Puymirat

Abstract Primary human skeletal muscle cell cultures derived from muscles of a myotonic dystrophy (DM) fetus provided a model in which both resistance to insulin action described in DM patient muscles and the potential ability of insulin-like growth factor I (IGF-I) to circumvent this defect could be investigated. Basal glucose uptake was the same in cultured DM cells as in normal myotubes. In DM cells, a dose of 10 nm insulin produced no stimulatory effect on glucose uptake, and at higher concentrations, stimulation of glucose uptake remained significantly lower than that in normal myotubes. In addition, basal and insulin-mediated protein synthesis were both significantly reduced compared with those in normal cells. In DM myotubes, insulin receptor messenger RNA expression and insulin receptor binding were significantly diminished, whereas the expression of GLUT1 and GLUT4 glucose transporters was not affected. These results indicate that impaired insulin action is retained in DM cultured myotubes. The action of recombinant human IGF-I (rhIGF-I) was evaluated in this cellular model. We showed that rhIGF-I is able to stimulate glucose uptake to a similar extent as in control cells and restore normal protein synthesis level in DM myotubes. Thus, rhIGF-I is able to bypass impaired insulin action in DM myotubes. This provides a solid foundation for the eventual use of rhIGF-I as an effective treatment of muscle weakness and wasting in DM.


1987 ◽  
Vol 252 (2) ◽  
pp. E273-E278 ◽  
Author(s):  
A. Debant ◽  
M. Guerre-Millo ◽  
Y. Le Marchand-Brustel ◽  
P. Freychet ◽  
M. Lavau ◽  
...  

Thirty-day-old obese Zucker rats have hyperresponsive adipose tissue, whereas their skeletal muscle normally responds to insulin in vitro. To further substantiate the role of insulin receptor tyrosine kinase in insulin action, we have studied the kinase activity of receptors obtained from adipocytes and skeletal muscle of these young obese Zucker rats. Insulin receptors, partially purified by wheat germ agglutinin agarose chromatography from plasma membranes of isolated adipocytes or from skeletal muscles, were studied in a cell-free system for auto-phosphorylation and for their ability to phosphorylate a synthetic glutamate-tyrosine copolymer. For an identical amount of receptors, the insulin stimulatory action on its beta-subunit receptor phosphorylation was markedly augmented in preparations from hyperresponsive adipocytes of obese animals compared with lean rats. Basal phosphorylation of adipocyte insulin receptors was nearly identical in lean and obese animals. Similarly the capacity of adipocyte insulin receptors to catalyze the phosphorylation of the synthetic substrate in response to insulin was increased. By contrast, the kinase activity of insulin receptors prepared from normally insulin-responsive skeletal muscle was similar in preparations of lean and obese rats. These results show that a state of hyperresponsiveness to insulin is correlated with a parallel increase of insulin receptor kinase activity suggesting an important role for this activity in insulin action.


1995 ◽  
Vol 270 (26) ◽  
pp. 15844-15852 ◽  
Author(s):  
Claudia Miele ◽  
Pietro Formisano ◽  
Kyoung-Jin Sohn ◽  
Matilde Caruso ◽  
Mannida Pianese ◽  
...  

1989 ◽  
Vol 256 (1) ◽  
pp. E138-E144 ◽  
Author(s):  
J. L. Treadway ◽  
D. E. James ◽  
E. Burcel ◽  
N. B. Ruderman

Insulin action in skeletal muscle is markedly enhanced for several hours after an acute bout of exercise. The purpose of this study was to examine the possible involvement of the intrinsic tyrosine kinase activity of the insulin receptor in mediating these effects. Red and white muscles were removed from rats either at rest or following a treadmill run (45 min at 18 m/min), and insulin receptors were isolated in partially purified form. Basal and insulin-stimulated receptor kinase activity was higher in red than in white muscle, in agreement with previous studies (J. Biol. Chem. 261: 14939-14944, 1986). There was no effect of exercise on insulin binding, basal and insulin-stimulated receptor autophosphorylation, or basal and insulin-stimulated exogenous kinase activity, in either red or white muscle. Similar data were obtained when phosphatase inhibitors were used during receptor isolation. The structure of insulin receptors isolated from the muscle of exercised and control rats was similar as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of affinity cross-linked insulin receptors. We conclude that enhanced insulin action in muscle during the postexercise state is not related to increased kinase activity of the insulin receptor.


Sign in / Sign up

Export Citation Format

Share Document