1682-P: Cotransplantation of Islets with Adipose-Derived Stem Cells Synergistically Reduced Blood Glucose in STZ-Induced Diabetic Rats

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1682-P
Author(s):  
XIAO-DONG CHEN ◽  
SHENGXIAN LI ◽  
HANZHOU WANG
2015 ◽  
Vol 364 (2) ◽  
pp. 357-367 ◽  
Author(s):  
Jun Zhang ◽  
Xiaozhi Bai ◽  
Bin Zhao ◽  
Yunchuan Wang ◽  
Linlin Su ◽  
...  

2017 ◽  
Vol 4 (S) ◽  
pp. 166
Author(s):  
Anh Nguyen Tu Bui ◽  
Cong Le Thanh Nguyen ◽  
Anh Thi Minh Nguyen ◽  
Nhat Chau Truong ◽  
Ngoc Kim Phan ◽  
...  

Background: Type 2 diabetes (T2D) is the most common form of diabetes and accounts for 90-95% of all existing diabetic cases. The main etiologies of T2D include insulin resistance in target tissues, insufficient secretion of insulin and subsequent decline of pancreatic β-cell function. Recently, many studies have suggested that adipose – derived stem cells (ASCs) were potential to alleviate insulin resistance and hyperglycemia and promote the islets repair. In this study, ASCs were hypothesized that they could have ameliorative effects on type 2 diabetic mice.  Methods: Type 2 diabetic mice were induced by a combination of high-fat diet and injection of STZ 100 mg/kg and NA 120 mg/kg. Thereafter, two doses of 106 human ASCs were transplanted 2 week interval into each mouse via the tail vein. The mice were monitored health condition, rate of mortaity, body weight, consumption of food and water, blood glucose level, serum insulin level and histological structure of pancreatic islets.  Results: Our results indicated that the ASC-treated mice expressed improved condition in comparision with non-treated diabetic mice. The consumption of food and water as well as the blood glucose level decreased. Simultaneously, ASC transplantation improved the impaired glucose tolerance and insulin tolerance in T2D mice. Besides, the total cholesterol have significantly decreased.  Conclusion: it is suggested that human ASCs infusion is safe and effective for type 2 diabetes mellitus in mice regarding the improved glucose metabolism and insulin resistance.


2008 ◽  
Vol 31 (6) ◽  
pp. 328 ◽  
Author(s):  
Qing-Yu Dong ◽  
Li Chen ◽  
Guan-Qi Gao ◽  
Lei Wang ◽  
Jun Song ◽  
...  

Background: Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stroma cells which can provide a potential therapy for diabetes mellitus. But the mechanism is still controversial. Also, the status of BM-MSCs under hyperglycemia is not known. In the present study, we investigated the status of BM-MSCs in experimental-diabetic rat and demonstrated the rescue of experimental diabetes by diabetic MSCs transplantation. Methods: BM-MSCs were cultured and the potential of multiple-differentiation was identified through induction into osteoblasts. MSCs of passage 3 were used for the following experiment. The MSCs were labeled with 5-bromo-2?-deoxyuridine (BrdU). Diabetes in rats was induced by STZ injection. The rats were divided into three groups: normal control group (no DM, rats treated with saline through tail vein, n=10); DM control group (DM, no transplantation of MSCs, n=20); experimental group (DM and transplantation of MSCs, n=20). Body weight and blood glucose of the rats were monitored during the experiment after transplantation of MSCs. Paraffin sections of pancreas were obtained from rats of each group. Immuno-histochemistry analysis and double immunofluorescence were used to detect the BM-MSCs in the pancreatic tissue and their differentiating state. Results: MSCs were 89.5% labeled by BrdU and DAPI, which was green/blue double stained under fluorescent microscopy. Transplantation of diabetic MSCs resulted in a reduction of hyperglycemia on day 45 in experimental diabetic rats compared with control rats (17.7 mM ±3.9 vs 27.8 mM ± 2.1, P < 0.05), There was also a difference between MSC-treated experimental diabetic rats and control rats in body weight (232.7 g ±19.7 vs 133.3g ±13.1, P < 0.05). Histological and morphometric analysis of the pancreas of experimental diabetic rats showed the presence and differentiation of transplanted MSCs into insulin-producing cells which evidenced by double-staining of anti-BrdU and insulin. Also, there were many small islets throughout the sections. Their mean area and diameter analysis revealed that they were smaller thancontrol islets (1835.7 ± 175.8 µm2 vs 13257.2 ± 1457.6 µm2; 43.5 ± 3.7 µm vs 119.9 ± 5.8 µm, respectively, P < 0.05). Conclusion: Allogeneic MSCs transplantation can reduce blood glucose level in recipient rats. A relatively small quantity of transplanted diabetic MSCs survive and transdifferentiate into insulin-producing cells in the pancreas of recipient rats. Upon transplantation these cells initiate endogenous pancreatic regeneration by neogenesis of islet of recipient origin. The present study demonstrates that diabetic MSCs retains its stemness and potential to induce pancreatic regeneration on transplantation.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Hai-Bo Zhang ◽  
Feng-Zhi Chen ◽  
Shu-Hua He ◽  
Yan-Bing Liang ◽  
Zhi-Qiang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document