human ascs
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 3)

2022 ◽  
Vol 9 (1) ◽  
pp. 21
Author(s):  
Walter Baumgartner ◽  
Petra Wolint ◽  
Silvan Hofmann ◽  
Cléa Nüesch ◽  
Maurizio Calcagni ◽  
...  

Specific microenvironments can trigger stem cell tenogenic differentiation, such as specific substrates or dynamic cell cultivation. Electrospun meshes composed by core–shell fibers (random or aligned; PDMS core; piezoelectric PVDFhfp shell) were fabricated by coaxial electrospinning. Elastic modulus and residual strain were assessed. Human ASCs were seeded on such scaffolds either under static conditions for 1 week or with subsequent 10% dynamic stretching for 10,800 cycles (1 Hz, 3 h), assessing load elongation curves in a Bose® bioreactor system. Gene expression for tenogenic expression, extracellular matrix, remodeling, pro-fibrotic and inflammatory marker genes were assessed (PCR). For cell-seeded meshes, the E modulus increased from 14 ± 3.8 MPa to 31 ± 17 MPa within 3 h, which was not observed for cell-free meshes. Random fibers resulted in higher tenogenic commitment than aligned fibers. Dynamic cultivation significantly enhanced pro-inflammatory markers. Compared to ASCs in culture flasks, ASCs on random meshes under static cultivation showed a significant upregulation of Mohawk, Tenascin-C and Tenomodulin. The tenogenic commitment expressed by human ASCs in contact with random PVDFhfp/PDMS paves the way for using this novel highly elastic material as an implant to be wrapped around a lacerated tendon, envisioned as a functional anti-adhesion membrane.


2021 ◽  
Vol 22 (18) ◽  
pp. 10153
Author(s):  
Francisco Drusso Martinez-Garcia ◽  
Martine Margaretha Valk ◽  
Prashant Kumar Sharma ◽  
Janette Kay Burgess ◽  
Martin Conrad Harmsen

The extracellular matrix provides mechanical cues to cells within it, not just in terms of stiffness (elasticity) but also time-dependent responses to deformation (viscoelasticity). In this work, we determined the viscoelastic transformation of gelatine methacryloyl (GelMA) hydrogels caused by adipose tissue-derived stromal cells (ASCs) through mathematical modelling. GelMA-ASCs combination is of interest to model stem cell-driven repair and to understand cell-biomaterial interactions in 3D environments. Immortalised human ASCs were embedded in 5%, 10%, and 15% (w/v) GelMA hydrogels and evaluated for 14 d. GelMA had a concentration-dependent increase in stiffness, but cells decreased this stiffness over time, across concentrations. Viscoelastic changes in terms of stress relaxation increased progressively in 5% GelMA, while mathematical Maxwell analysis showed that the relative importance (Ri) of the fastest Maxwell elements increased proportionally. The 10% GelMA only showed differences at 7 d. In contrast, ASCs in 15% GelMA caused slower stress relaxation, increasing the Ri of the slowest Maxwell element. We conclude that GelMA concentration influenced the stiffness and number of Maxwell elements. ASCs changed the percentage stress relaxation and Ri of Maxwell elements transforming hydrogel viscoelasticity into a more fluid environment over time. Overall, 5% GelMA induced the most favourable ASC response.


Author(s):  
Andreina Bruno ◽  
Caterina Di Sano ◽  
Hans-Uwe Simon ◽  
Pascal Chanez ◽  
Angelo Maria Patti ◽  
...  

Adipose tissue is widely recognized as an extremely active endocrine organ producing adipokines as leptin that bridge metabolism and the immune system. Pre-B-cell leukemia homeobox (Pbx)-regulating protein-1 (PREP1) is a ubiquitous homeodomain transcription factor involved in the adipogenic differentiation and insulin-sensitivity processes. Leptin, as pleiotropic adipokine, and TGF-β, known to be expressed by primary pre-adipocytes [adipose-derived stem cells (ASCs)] and mature differentiated adipocytes, modulate inflammatory responses. We aimed to assess for the first time if leptin and TGF-β interfere with PREP1 expression in both ASCs and mature differentiated adipocytes. Human ASCs were isolated from subcutaneous adipose liposuction and, after expansion, fully differentiated to mature adipocytes. In both ASCs and adipocytes, leptin and TGF-β1 significantly decreased the expression of PREP1, alone and following concurrent Toll-like receptor 4 (TLR4) activation. Moreover, in adipocytes, but not in ASCs, leptin increased TLR4 and IL-33 expression, whereas TGF-β1 enhanced TLR4 and IL-6 expression. Taken together, we provide evidence for a direct regulation of PREP1 by leptin and TGF-β1 in ASCs and mature adipocytes. The effects of leptin and TGF-β1 on immune receptors and cytokines, however, are limited to mature adipocytes, suggesting that modulating immune responses depends on the differentiation of ASCs. Further studies are needed to fully understand the regulation of PREP1 expression and its potential for the development of new therapeutic approaches in obesity-related diseases.


2021 ◽  
Author(s):  
Hong-Chen Yan ◽  
Yu Sun ◽  
Ming-Yu Zhang ◽  
Shu-Er Zhang ◽  
Jia-Dong Sun ◽  
...  

Abstract Background Skin-derived stem cells (SDSCs) are a class of adult stem cells (ASCs) that have the ability to self-renew and differentiate. The regulation mechanisms involved in the differentiation of ASCs is a hot topic. Porcine models have close similarities to humans and porcine SDSCs (pSDSCs) offer an ideal in vitro model to investigate human ASCs. To date, studies concerning the role of yes-associated protein (YAP) in ASCs are limited, and the mechanism of its influence on self-renewal and differentiation of ASCs remain unclear. In this paper, we explore the link between the transcriptional regulator YAP and the fate of pSDSCs. Results We found that YAP promotes the pluripotent state of pSDSCs by maintaining the high expression of the pluripotency genes Sox2, Oct4. The overexpression of YAP prevented the differentiation of pSDSCs and the depletion of YAP by small interfering RNA (siRNAs) suppressed the self-renewal of pSDSCs. In addition, we found that YAP regulates the fate of pSDSCs through a mechanism related to the Wnt/β-catenin signaling pathway. When an activator of the Wnt/β-catenin signaling pathway, CHIR99021, was added to pSDSCs overexpressing YAP the ability of pSDSCs to differentiate was partially restored. Conversely, when XAV939 an inhibitor of Wnt/β-catenin signaling pathway, was added to YAP knockdown pSDSCs a higher self-renewal ability resulted. Conclusions our results suggested that, YAP and the Wnt/β-catenin signaling pathway interact to regulate the fate of pSDSCs.


2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S84-S85
Author(s):  
Tiffany C Heard ◽  
Belinda Gomez ◽  
Jamila Duarte ◽  
Michael A Dubick ◽  
Robert J Christy ◽  
...  

Abstract Introduction Adipose stem cells (ASCs) have shown therapeutic promise for inflammatory conditions that beget multi organ dysfunction, including burns. While ASCs have immunomodulatory properties, some studies have brought up safety concerns of increased pro-coagulant activity such as pulmonary microvascular thrombi formation after intravenous (IV) administration of ASCs. In the present study, the aims are two-fold: 1) to verify if IV administration of human ASCs promotes coagulation and 2) to determine if human ASCs affect organ function in a 40% total body surface area (TBSA) swine burn model. Methods Female Yorkshire swine (39.63 ± 8.26kg) were anesthetized and subjected to 40% TBSA full thickness contact burns according to a formerly established model. After recovery from anesthesia, animals were randomized to receive 15ml/kg Lactated Ringer’s Solution containing: 1- no ASCs; 2- a low dose (5x105 ASCs/kg), or 3- a high dose (5x106 ASCs/kg) over a 15-minute period as a bolus. Blood was collected at baseline (BL) and 3, 6, 12, and 24h post burn to determine the effect of ASCs on organ function and coagulation status. At 24h post-burn, animals were humanely euthanized, and kidney and liver tissue was collected for histological and Western blot analyses. Data is presented as mean ± SEM, and statistical significance was set at p< 0.05. Results The high dose of ASCs significantly increased the circulating number of monocytes starting at 12 hours. Two-way ANOVA revealed a significant effect of ASCs on both prothrombin times (PT) and international normalized ratio (INR) (1.03 ± 0.04, 0.93 ± 0.03, and 1.02 ± 0.04 for no, low and high ASC groups, respectively at 24 hours). There were no differences in partial thromboplastin time, fibrinogen, or d-dimer levels. Both doses of ASCs briefly exacerbated burn-induced increases in total bilirubin at 3 hours (0.062 ± 0.025mg/dL, 0.148 ± 0.060mg/dL, and 0.211 ± 0.086mg/dL in no, low, and high ASC groups, respectively). ASCs did not alter urine output; yet, there was a significant effect of ASCs on creatinine. Western blotting revealed a rise in caspase expression in the liver of animals receiving a low dose of ASCs, while there was no difference in caspase expression in kidneys. Conclusions We show that IV administration of xenogeneic ASCs produces minimal changes in coagulation status and renal and hepatic dysfunction. Modest changes in the extrinsic coagulation pathway were dose-dependent, while exacerbation of liver dysfunction was brief and normalized after administration of ASCs was completed. We cannot rule out that continuous infusion of ASCs would not have a cumulative effect on organ dysfunction.


Author(s):  
Tim Tian Y. Han ◽  
John T. Walker ◽  
Aaron Grant ◽  
Gregory A. Dekaban ◽  
Lauren E. Flynn

Cell-based therapies involving the delivery of adipose-derived stromal cells (ASCs) on decellularized adipose tissue (DAT) scaffolds are a promising approach for soft tissue augmentation and reconstruction. Our lab has recently shown that culturing human ASCs on DAT scaffolds within a perfusion bioreactor prior to implantation can enhance their capacity to stimulate in vivo adipose tissue regeneration. Building from this previous work, the current study investigated the effects of bioreactor preconditioning on the ASC phenotype and secretory profile in vitro, as well as host cell recruitment following implantation in an athymic nude mouse model. Immunohistochemical analyses indicated that culturing within the bioreactor increased the percentage of ASCs co-expressing inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1), as well as tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10), within the peripheral regions of the DAT relative to statically cultured controls. In addition, bioreactor culture altered the expression levels of a range of immunomodulatory factors in the ASC-seeded DAT. In vivo testing revealed that culturing the ASCs on the DAT within the perfusion bioreactor prior to implantation enhanced the infiltration of host CD31+ endothelial cells and CD26+ cells into the DAT implants, but did not alter CD45+F4/80+CD68+ macrophage recruitment. However, a higher fraction of the CD45+ cell population expressed the pro-regenerative macrophage marker CD163 in the bioreactor group, which may have contributed to enhanced remodeling of the scaffolds into host-derived adipose tissue. Overall, the findings support that bioreactor preconditioning can augment the capacity of human ASCs to stimulate regeneration through paracrine-mediated mechanisms.


2020 ◽  
Vol 75 (12) ◽  
pp. 2308-2319 ◽  
Author(s):  
Markus Mandl ◽  
Sonja A Wagner ◽  
Florian M Hatzmann ◽  
Asim Ejaz ◽  
Heike Ritthammer ◽  
...  

Abstract The role of Ras-Mitogen-activated protein kinase (MAPK) signaling in cellular aging is not precisely understood. Recently, we identified Sprouty1 (SPRY1) as a weight-loss target gene in human adipose stem/progenitor cells (ASCs) and showed that Sprouty1 is important for proper regulation of adipogenesis. In the present study, we show that loss-of-function of Sprouty1 by CRISPR/Cas9-mediated genome editing in human ASCs leads to hyper-activation of MAPK signaling and a senescence phenotype. Sprouty1 knockout ASCs undergo an irreversible cell cycle arrest, become enlarged and stain positive for senescence-associated β-galactosidase. Sprouty1 down-regulation leads to DNA double strand breaks, a considerably increased number of senescence-associated heterochromatin foci and induction of p53 and p21Cip1. In addition, we detect an increase of hypo-phosphorylated Retinoblastoma (Rb) protein in SPRY1 knockout ASCs. p16Ink4A is not induced. Moreover, we show that Sprouty1 knockout leads to induction of a senescence-associated secretory phenotype as indicated by the activation of the transcription factors NFκB and C/EBPβ and a significant increase in mRNA expression and secretion of interleukin-8 (IL-8) and CXCL1/GROα. Finally, we demonstrate that adipogenesis is abrogated in senescent SPRY1 knockout ASCs. In conclusion, this study reveals a novel mechanism showing the importance of Sprouty1 for the prevention of senescence and the maintenance of the proliferation and differentiation capacity of human ASCs.


2020 ◽  
Vol 522 (1) ◽  
pp. 213-219 ◽  
Author(s):  
Jin-Su Kim ◽  
Tae Hyung Kim ◽  
Dong Lim Kang ◽  
Song Yeon Baek ◽  
Yura Lee ◽  
...  

2019 ◽  
Vol 20 (20) ◽  
pp. 5218
Author(s):  
Chih-Hsun Lin ◽  
Jen-Her Lu ◽  
Kai Hsia ◽  
Hsinyu Lee ◽  
Chao-Ling Yao ◽  
...  

Adipose stem cells (ASCs) show potential in the recellularization of tissue engineerined vascular grafts (TEVGs). However, whether sphingosine-1-phosphate (S1P) could further enhance the adhesion, proliferation, and antithrombosis of ASCs on decellularized vascular scaffolds is unknown. This study investigated the effect of S1P on the recellularization of TEVGs with ASCs. Human ASCs were derived from lipoaspirate. Scaffolds were derived from human umbilical arteries (HUAs) with treatment of 0.1% sodium dodecyl sulfate (SDS) for 48 h (decellularized HUAs; DHUAs). The adhesion, proliferation, and antithrombotic functions (kinetic clotting time and platelet adhesion) of ASCs on DHUAs with S1P or without S1P were evaluated. The histology and DNA examination revealed a preserved structure and the elimination of the nuclear component more than 95% in HUAs after decellularizaiton. Human ASCs (hASCs) showed CD29(+), CD73(+), CD90(+), CD105(+), CD31(–), CD34(–), CD44(–), HLA-DR(–), and CD146(–) while S1P-treated ASCs showed marker shifting to CD31(+). In contrast to human umbilical vein endothelial cells (HUVECs), S1P didn’t significantly increase proliferation of ASCs on DHUAs. However, the kinetic clotting test revealed prolonged blood clotting in S1P-treated ASC-recellularized DHUAs. S1P also decreased platelet adhesion on ASC-recellularized DHUAs. In addition, S1P treatment increased the syndecan-1 expression of ASCs. TEVG reconstituted with S1P and ASC-recellularized DHUAs showed an antithrombotic effect in vitro. The preliminary results showed that ASCs could adhere to DHUAs and S1P could increase the antithrombotic effect on ASC-recellularized DHUAs. The antithrombotic effect is related to ASCs exhibiting an endothelial-cell-like function and preventing of syndecan-1 shedding. A future animal study is warranted to prove this novel method.


Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 724 ◽  
Author(s):  
Mathew Cowper ◽  
Trivia Frazier ◽  
Xiying Wu ◽  
J. Curley ◽  
Michelle Ma ◽  
...  

Introduction: Adipose derived stromal/stem cells (ASCs) hold potential as cell therapeutics for a wide range of disease states; however, many expansion protocols rely on the use of fetal bovine serum (FBS) as a cell culture nutrient supplement. The current study explores the substitution of lysates from expired human platelets (HPLs) as an FBS substitute. Methods: Expired human platelets from an authorized blood center were lysed by freeze/thawing and used to examine human ASCs with respect to proliferation using hematocytometer cell counts, colony forming unit-fibroblast (CFU-F) frequency, surface immunophenotype by flow cytometry, and tri-lineage (adipocyte, chondrocyte, osteoblast) differentiation potential by histochemical staining. Results: The proliferation assays demonstrated that HPLs supported ASC proliferation in a concentration dependent manner, reaching levels that exceeded that observed in the presence of 10% FBS. The concentration of 0.75% HPLs was equivalent to 10% FBS when utilized in cell culture media with respect to proliferation, immunophenotype, and CFU-F frequency. When added to osteogenic, adipogenic, and chondrogenic differentiation media, both supplements showed appropriate differentiation by staining. Conclusion: HPLs is an effective substitute for FBS in the culture, expansion and differentiation of human ASCs suitable for pre-clinical studies; however, additional assays and analyses will be necessary to validate HPLs for clinical applications and regulatory approval.


Sign in / Sign up

Export Citation Format

Share Document