Fully Closed Loop Glucose Control With a Bihormonal Artificial Pancreas in Adults With Type 1 Diabetes: An Outpatient, Randomized, Crossover Trial

Diabetes Care ◽  
2021 ◽  
pp. dc202106
Author(s):  
Helga Blauw ◽  
A. Joannet Onvlee ◽  
Michel Klaassen ◽  
Arianne C. van Bon ◽  
J. Hans DeVries
2021 ◽  
Author(s):  
Barbora Paldus ◽  
Dale Morrison ◽  
Dessi P. Zaharieva ◽  
Melissa H. Lee ◽  
Hannah Jones ◽  
...  

<b>Objective</b>: To compare glucose control with hybrid closed loop (HCL) when challenged by moderate-intensity exercise (MIE), high-intensity intermittent exercise (HIE) and resistance exercise (RE) while profiling counter-regulatory hormones, lactate, ketones, and kinetic data in adults with type 1 diabetes. <p><b>Methods</b>: <a>Open-label multisite randomized crossover trial. </a><a>Adults with type 1 diabetes undertook 40 min of HIE, MIE, and RE in random order while using HCL (Medtronic 670G) with a temporary target set 2 hours prior to and during exercise and 15g carbohydrates if pre-exercise glucose was <126mg/dL, to prevent hypoglycemia.</a> Primary outcome was median (IQR) continuous glucose monitoring (CGM) time-in-range (TIR, 70-180 mg/dL) for 14 hours post-exercise commencement. Accelerometer data and venous glucose, ketones, lactate, and counter-regulatory hormones were measured for 280 min post-exercise commencement. </p> <p><b>Results</b>: Median TIR was 81% [67, 93]%, 91% [80, 94]%, and 80% [73, 89]% for 0-14 hours post-exercise commencement for HIE, MIE and RE, respectively (n=30), with no difference between exercise types (MIE v HIE; p=0.11, MIE v RE p=0.11, HIE v RE p=0.90). Time-below-range was 0% for all exercise bouts. For HIE and RE compared with MIE, there were greater increases respectively in noradrenaline (p=0.01, p=0.004), cortisol (p<0.001, p=0.001), lactate (p£0.001, p£0.001) and heart rate (p=0.007, p=0.015). During HIE compared with MIE, there were greater increases in growth hormone (p=0.024). </p> <p><b>Conclusions</b>: Under controlled conditions, HCL provided satisfactory glucose control with no difference between exercise type. Lactate, counter-regulatory hormones, and kinetic data differentiate type and intensity of exercise, and their measurement may help inform insulin needs during exercise. However, their potential utility as modulators of insulin dosing will be limited by the pharmacokinetics of subcutaneous insulin delivery. </p>


2021 ◽  
Author(s):  
Barbora Paldus ◽  
Dale Morrison ◽  
Dessi P. Zaharieva ◽  
Melissa H. Lee ◽  
Hannah Jones ◽  
...  

<b>Objective</b>: To compare glucose control with hybrid closed loop (HCL) when challenged by moderate-intensity exercise (MIE), high-intensity intermittent exercise (HIE) and resistance exercise (RE) while profiling counter-regulatory hormones, lactate, ketones, and kinetic data in adults with type 1 diabetes. <p><b>Methods</b>: <a>Open-label multisite randomized crossover trial. </a><a>Adults with type 1 diabetes undertook 40 min of HIE, MIE, and RE in random order while using HCL (Medtronic 670G) with a temporary target set 2 hours prior to and during exercise and 15g carbohydrates if pre-exercise glucose was <126mg/dL, to prevent hypoglycemia.</a> Primary outcome was median (IQR) continuous glucose monitoring (CGM) time-in-range (TIR, 70-180 mg/dL) for 14 hours post-exercise commencement. Accelerometer data and venous glucose, ketones, lactate, and counter-regulatory hormones were measured for 280 min post-exercise commencement. </p> <p><b>Results</b>: Median TIR was 81% [67, 93]%, 91% [80, 94]%, and 80% [73, 89]% for 0-14 hours post-exercise commencement for HIE, MIE and RE, respectively (n=30), with no difference between exercise types (MIE v HIE; p=0.11, MIE v RE p=0.11, HIE v RE p=0.90). Time-below-range was 0% for all exercise bouts. For HIE and RE compared with MIE, there were greater increases respectively in noradrenaline (p=0.01, p=0.004), cortisol (p<0.001, p=0.001), lactate (p£0.001, p£0.001) and heart rate (p=0.007, p=0.015). During HIE compared with MIE, there were greater increases in growth hormone (p=0.024). </p> <p><b>Conclusions</b>: Under controlled conditions, HCL provided satisfactory glucose control with no difference between exercise type. Lactate, counter-regulatory hormones, and kinetic data differentiate type and intensity of exercise, and their measurement may help inform insulin needs during exercise. However, their potential utility as modulators of insulin dosing will be limited by the pharmacokinetics of subcutaneous insulin delivery. </p>


2021 ◽  
Author(s):  
Helga Blauw ◽  
A. Joannet Onvlee ◽  
Michel Klaassen ◽  
Arianne C. van Bon ◽  
J. Hans DeVries

OBJECTIVE <p>To demonstrate the performance and safety of a bihormonal (insulin and glucagon) artificial pancreas in adults with type 1 diabetes.</p> <p> </p>RESEARCH DESIGN AND METHODS <p>In this outpatient, randomized, crossover trial, two-week fully closed loop glucose control (artificial pancreas therapy) was compared to two-week open loop control (patient’s normal insulin pump therapy with a glucose sensor if they had one). </p> <p> </p>RESULTS <p>Twenty three patients were included in the analysis. Median (IQR) time in range (70-180 mg/dL [3.9-10 mmol/L]) was significantly higher during closed loop (86.6% [84.9-88.5]) compared with open loop (53.9% [49.7-67.2]; p<0.0001).</p> <p> </p>CONCLUSIONS <p>Compared to insulin pump therapy, the bihormonal artificial pancreas provided superior glucose control, without meal or exercise announcements, and was safe in adults with type 1 diabetes.</p>


2021 ◽  
Author(s):  
Barbora Paldus ◽  
Dale Morrison ◽  
Dessi P. Zaharieva ◽  
Melissa H. Lee ◽  
Hannah Jones ◽  
...  

<b>Objective</b>: To compare glucose control with hybrid closed loop (HCL) when challenged by moderate-intensity exercise (MIE), high-intensity intermittent exercise (HIE) and resistance exercise (RE) while profiling counter-regulatory hormones, lactate, ketones, and kinetic data in adults with type 1 diabetes. <p><b>Methods</b>: <a>Open-label multisite randomized crossover trial. </a><a>Adults with type 1 diabetes undertook 40 min of HIE, MIE, and RE in random order while using HCL (Medtronic 670G) with a temporary target set 2 hours prior to and during exercise and 15g carbohydrates if pre-exercise glucose was <126mg/dL, to prevent hypoglycemia.</a> Primary outcome was median (IQR) continuous glucose monitoring (CGM) time-in-range (TIR, 70-180 mg/dL) for 14 hours post-exercise commencement. Accelerometer data and venous glucose, ketones, lactate, and counter-regulatory hormones were measured for 280 min post-exercise commencement. </p> <p><b>Results</b>: Median TIR was 81% [67, 93]%, 91% [80, 94]%, and 80% [73, 89]% for 0-14 hours post-exercise commencement for HIE, MIE and RE, respectively (n=30), with no difference between exercise types (MIE v HIE; p=0.11, MIE v RE p=0.11, HIE v RE p=0.90). Time-below-range was 0% for all exercise bouts. For HIE and RE compared with MIE, there were greater increases respectively in noradrenaline (p=0.01, p=0.004), cortisol (p<0.001, p=0.001), lactate (p£0.001, p£0.001) and heart rate (p=0.007, p=0.015). During HIE compared with MIE, there were greater increases in growth hormone (p=0.024). </p> <p><b>Conclusions</b>: Under controlled conditions, HCL provided satisfactory glucose control with no difference between exercise type. Lactate, counter-regulatory hormones, and kinetic data differentiate type and intensity of exercise, and their measurement may help inform insulin needs during exercise. However, their potential utility as modulators of insulin dosing will be limited by the pharmacokinetics of subcutaneous insulin delivery. </p>


2021 ◽  
Author(s):  
Helga Blauw ◽  
A. Joannet Onvlee ◽  
Michel Klaassen ◽  
Arianne C. van Bon ◽  
J. Hans DeVries

OBJECTIVE <p>To demonstrate the performance and safety of a bihormonal (insulin and glucagon) artificial pancreas in adults with type 1 diabetes.</p> <p> </p>RESEARCH DESIGN AND METHODS <p>In this outpatient, randomized, crossover trial, two-week fully closed loop glucose control (artificial pancreas therapy) was compared to two-week open loop control (patient’s normal insulin pump therapy with a glucose sensor if they had one). </p> <p> </p>RESULTS <p>Twenty three patients were included in the analysis. Median (IQR) time in range (70-180 mg/dL [3.9-10 mmol/L]) was significantly higher during closed loop (86.6% [84.9-88.5]) compared with open loop (53.9% [49.7-67.2]; p<0.0001).</p> <p> </p>CONCLUSIONS <p>Compared to insulin pump therapy, the bihormonal artificial pancreas provided superior glucose control, without meal or exercise announcements, and was safe in adults with type 1 diabetes.</p>


Diabetologia ◽  
2017 ◽  
Vol 60 (11) ◽  
pp. 2157-2167 ◽  
Author(s):  
Klemen Dovc ◽  
Maddalena Macedoni ◽  
Natasa Bratina ◽  
Dusanka Lepej ◽  
Revital Nimri ◽  
...  

2015 ◽  
Vol 3 (12) ◽  
pp. 939-947 ◽  
Author(s):  
Jort Kropff ◽  
Simone Del Favero ◽  
Jerome Place ◽  
Chiara Toffanin ◽  
Roberto Visentin ◽  
...  

Diabetes Care ◽  
2016 ◽  
Vol 39 (11) ◽  
pp. 2019-2025 ◽  
Author(s):  
Martin Tauschmann ◽  
Janet M. Allen ◽  
Malgorzata E. Wilinska ◽  
Hood Thabit ◽  
Carlo L. Acerini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document