Effects of Growth Hormone on Insulin Action in Man: Mechanisms of Insulin Resistance, Impaired Suppression of Glucose Production, and Impaired Stimulation of Glucose Utilization

Diabetes ◽  
1982 ◽  
Vol 31 (8) ◽  
pp. 663-669 ◽  
Author(s):  
R. A. Rizza ◽  
L. J. Mandarino ◽  
J. E. Gerich
1986 ◽  
Vol 250 (3) ◽  
pp. E269-E273 ◽  
Author(s):  
I. Hansen ◽  
E. Tsalikian ◽  
B. Beaufrere ◽  
J. Gerich ◽  
M. Haymond ◽  
...  

Short-term growth hormone excess is associated with impaired hepatic and extrahepatic responses to insulin in the absence of a change in insulin binding. To determine whether similar defects occur after chronic growth hormone excess, insulin dose-response curves for stimulation of glucose utilization and suppression of glucose production and monocyte and erythrocyte insulin binding were determined in five acromegalic patients and six healthy volunteers of comparable age, sex, and obesity. During infusion of insulin, glucose infusion rates required to maintain euglycemia were significantly lower (P less than 0.02 all) in the acromegalic patients than in the control subjects. Suppression of glucose production was impaired in the acromegalic subjects at insulin concentrations in the physiological range but not at insulin concentrations in the supraphysiological range. In contrast stimulation of glucose utilization was decreased in the acromegalic subjects at both physiological and supraphysiological insulin concentrations. Neither monocyte nor erythrocyte insulin binding differed significantly in the acromegalic and control subjects. These data indicate that chronic growth hormone excess is associated with a defect in both hepatic and extrahepatic insulin action. The decrease in glucose utilization at supraphysiological insulin concentrations in the acromegalic subjects and the normal monocyte and erythrocyte insulin binding suggest a postbinding alteration in insulin action.


1992 ◽  
Vol 263 (5) ◽  
pp. E980-E987 ◽  
Author(s):  
R. D. Neely ◽  
D. P. Rooney ◽  
P. M. Bell ◽  
N. P. Bell ◽  
B. Sheridan ◽  
...  

Increased activity of the hepatic glucose-glucose 6-phosphate (G/G-6-P) cycle is associated with hepatic and peripheral insulin resistance in acromegaly. To determine whether a similar association occurs after short-term growth hormone (GH) elevation within the physiological range, two-step euglycemic hyperinsulinemic clamps were performed in normal human males after 12-h GH (2.2 ng.kg-1 x h-1) and control infusions. G/G-6-P cycle activity and endogenous glucose production (EGP) were determined by [2-3H]- and [6-3H]-glucose using labeled exogenous glucose infusions and selective enzymatic detritiation. GH increased levels of circulating lipid intermediates despite a twofold increase in basal insulin (P < 0.005), but plasma glucose, EGP, and G/G-6-P cycle activity were unchanged. GH impaired insulin suppression of EGP and lipid intermediates and impaired insulin stimulation of glucose disposal, but G/G-6-P cycle activity was unchanged. We conclude that increased activity of the G/G-6-P cycle does not contribute to the hepatic insulin resistance induced by GH under these conditions but that changes in fatty acid metabolism may be partly responsible for the impairment in hepatic and peripheral insulin action.


1973 ◽  
Vol 134 (4) ◽  
pp. 1103-1113 ◽  
Author(s):  
A. Betteridge ◽  
M. Wallis

The effect of insulin on the incorporation of radioactive leucine into growth hormone was investigated by using rat anterior pituitary glands incubated in vitro. A 50% stimulation over control values was observed at insulin concentrations above 2μm (280munits/ml). The effect was specific for growth hormone biosynthesis, over the range 1–5μm-insulin (140–700munits/ml). Lower more physiological concentrations had no significant effect in this system. Above 10μm (1.4 units/ml) total protein synthesis was also increased. The stimulation of growth hormone synthesis could be partially blocked by the addition of actinomycin D, suggesting that RNA synthesis was involved. Insulin was found to stimulate the rate of glucose utilization in a similar way to growth hormone synthesis. 2-Deoxyglucose and phloridzin, which both prevented insulin from stimulating glucose utilization, also prevented the effect of insulin on growth hormone synthesis. If glucose was replaced by fructose in the medium, the effect of insulin on growth hormone synthesis was decreased. We conclude that the rate of utilization of glucose may be an important step in mediating the effect of insulin on growth hormone synthesis.


2019 ◽  
Vol 316 (2) ◽  
pp. E333-E344 ◽  
Author(s):  
Morten Lyng Høgild ◽  
Ann Mosegaard Bak ◽  
Steen Bønløkke Pedersen ◽  
Jørgen Rungby ◽  
Jan Frystyk ◽  
...  

Growth hormone (GH) levels are blunted in obesity, but it is not known whether this relates to altered GH sensitivity and whether this influences the metabolic adaptation to fasting. Therefore, we investigated the effect of obesity on GH signal transduction and fasting-induced changes in GH action. Nine obese (BMI 35.7 kg/m2) and nine lean (BMI 21.5 kg/m2) men were studied in a randomized crossover design with 1) an intravenous GH bolus, 2) an intravenous saline bolus, and 3) 72 h of fasting. Insulin sensitivity (hyperinsulinemic, euglycemic clamp) and substrate metabolism (glucose tracer and indirect calorimetry) were measured in studies 1 and 2. In vivo GH signaling was assessed in muscle and fat biopsies. GH pharmacokinetics did not differ between obese and lean subjects, but endogenous GH levels were reduced in obesity. GH signaling (STAT5b phosphorylation and CISH mRNA transcription), and GH action (induction of lipolysis and peripheral insulin resistance) were similar in the two groups, but a GH-induced insulin antagonistic effect on endogenous glucose production only occurred in the obese. Fasting-induced IGF-I reduction was completely abrogated in obese subjects despite a comparable relative increase in GH levels (ΔIGF-I: lean, −66 ± 10 vs. obese, 27 ± 16 µg/l; P < 0.01; ΔGH: lean, 647 ± 280 vs. obese, 544 ± 220%; P = 0.76]. We conclude that 1) GH signaling is normal in obesity, 2) in the obese state, the preservation of IGF-I with fasting and the augmented GH-induced central insulin resistance indicate increased hepatic GH sensitivity, 3) blunted GH levels in obesity may protect against insulin resistance without compromising IGF-I status.


1959 ◽  
Vol 196 (2) ◽  
pp. 231-234 ◽  
Author(s):  
N. Altszuler ◽  
R. Steele ◽  
A. Dunn ◽  
J. S. Wall ◽  
R. C. de Bodo

The mechanism whereby growth hormone diminishes the hypoglycemic effect of insulin was investigated in hypophysectomized dogs using a C14 glucose dilution technique. An intravenous injection of insulin into the normal dog increased the rate of glucose utilization, and the resulting hypoglycemia was promptly abolished by an increased rate of glucose production. In the hypophysectomized dog prior to growth hormone administration, the insulin injection increased the rate of glucose utilization to a greater extent than in the normal animal, while the ability to increase the rate of glucose production was shown to be limited. In the hypophysectomized dog, a growth hormone regimen (1 mg/kg/day for 4 days) increased the rate of glucose production and utilization. The intravenous injection of insulin during the growth hormone regimen resulted in a lesser increase in the rate of plasma glucose utilization than observed prior to the growth hormone regimen. Furthermore, the growth hormone regimen improved the animal's limited ability to increase glucose production in response to the insulin-induced hypoglycemia. These effects of growth hormone contribute to the decreased effectiveness of insulin. The relationship of the ‘anti-insulin’ effect of growth hormone to its influence on glucose turnover is discussed.


1989 ◽  
Vol 120 (3) ◽  
pp. 257-265 ◽  
Author(s):  
Ole Hother-Nielsen ◽  
Ole Schmitz ◽  
Per H. Andersen ◽  
Henning Beck-Nielsen ◽  
Oluf Pedersen

Abstract. Nine obese patients with Type II diabetes mellitus were examined in a double-blind cross-over study. Metformin 0.5 g trice daily or placebo were given for 4 weeks. At the end of each period fasting and day-time postprandial values of plasma glucose, insulin, C-peptide and lactate were determined, and in vivo insulin action was assessed using the euglycemic clamp in combination with [3-3H]glucose tracer technique. Metformin treatment significantly reduced mean day-time plasma glucose levels (10.2 ± 1.2 vs 11.4 ± 1.2 mmol/l, P< 0.01) without enhancing mean day-time plasma insulin (43 ± 4 vs 50 ± 7 mU/l, NS) or C-peptide levels (1.26 ± 0.12 vs 1.38 ± 0.18 nmol/l, NS). Fasting plasma lactate was unchanged (1.57 ± 0.16 vs 1.44 ± 0.11 mmol/l, NS), whereas mean day-time plasma lactate concentrations were slightly increased (1.78 ± 0.11 vs 1.38 ± 0.11 mmol/l, P< 0.01). The clamp study revealed that metformin treatment was associated with an enhanced insulin-mediated glucose utilization (370 ± 38 vs 313 ± 33 mg · m−2 · min−1, P< 0.01), whereas insulin-mediated suppression of hepatic glucose production was unchanged. Also basal glucose clearance was improved (61.0 ± 5.8 vs 50.6 ± 2.8 ml · n−2 · min−1,, P< 0.05), whereas basal hepatic glucose production was unchanged (81 ± 6 vs 77 ± 4 mg · m−2 · min−1, NS). Conclusions: 1) Metformin treatment in obese Type II diabetic patients reduces hyperglycemia without changing the insulin secretion. 2) The improved glycemic control during metformin treatment was associated with an enhanced insulin-mediated glucose utilization, presumably in skeletal muscle, whereas no effect could be demonstrated on hepatic glucose production.


1989 ◽  
Vol 256 (6) ◽  
pp. E835-E843 ◽  
Author(s):  
P. De Feo ◽  
G. Perriello ◽  
E. Torlone ◽  
M. M. Ventura ◽  
F. Santeusanio ◽  
...  

To test the hypothesis that growth hormone secretion plays a counterregulatory role in prolonged hypoglycemia in humans, four studies were performed in nine normal subjects. Insulin (15 mU.M-2.min-1) was infused subcutaneously (plasma insulin 27 +/- 2 microU/ml), and plasma glucose decreased from 88 +/- 2 to 53 +/- 1 mg/dl for 12 h. In study 1, plasma glucose, glucose fluxes (D-[3-3H]glucose), substrate, and counterregulatory hormone concentrations were simply monitored. In study 2 (pituitary-adrenal-pancreatic clamp), insulin and counterregulatory hormone secretions (except for catecholamines) were prevented by somatostatin (0.5 mg/h iv) and metyrapone (0.5 g/4 h po), and glucagon, cortisol, and growth hormone were reinfused to reproduce the concentrations of study 1. In study 3 (lack of growth hormone increase), the pituitary-adrenal-pancreatic clamp was performed with maintenance of plasma growth hormone at basal levels, and glucose was infused whenever needed to reproduce plasma glucose concentration of study 2. Study 4 was identical to study 3, but exogenous glucose was not infused. Isolated lack of a growth hormone response caused a decrease in hepatic glucose production and an increase in glucose utilization that resulted in an approximately 25% greater hypoglycemia despite compensatory increases in plasma catecholamines. Plasma free fatty acid, 3-beta-hydroxybutyrate, and glycerol concentrations were reduced approximately 50%. It is concluded that growth hormone normally plays an important counterregulatory role during hypoglycemia by augmenting glucose production, decreasing glucose utilization, and accelerating lipolysis.


1993 ◽  
Vol 265 (6) ◽  
pp. E845-E851 ◽  
Author(s):  
G. Rossi ◽  
R. S. Sherwin ◽  
A. S. Penzias ◽  
P. Lapaczewski ◽  
R. J. Jacob ◽  
...  

To determine the temporal sequence of pregnancy-induced changes in insulin action and secretion, awake midpregnant (11-12 days) and late pregnant (19-20 days) rats underwent a two-step euglycemic hyperinsulinemic or a hyperglycemic clamp study after a 24-h fast. During euglycemia, insulin-stimulated increments in glucose uptake and clearance in midpregnant rats were reduced by 60-70% at the lower dose (insulin approximately 360 pM) and by 20-30% at the higher dose (insulin approximately 1,750 pM; P < 0.01 vs. virgin controls). Insulin action was also diminished in late pregnant rats. However, the magnitude of resistance did not increase. Insulin-mediated suppression of glucose production was only minimally impaired in midpregnancy. In contrast, glucose production was virtually unchanged in late pregnancy, even at the highest insulin dose. During hyperglycemia, insulin responses in late pregnancy were markedly increased 5-fold above controls and 2.5-fold above midpregnant rats (P < 0.05). We conclude that rat pregnancy is characterized by the early appearance of peripheral insulin resistance. As pregnancy progresses toward term, marked hepatic insulin resistance and insulin hypersecretion develop, whereas peripheral insulin resistance demonstrates negligible changes. These data imply that insulin hypersecretion during late pregnancy is most closely linked to hepatic insulin resistance, at least in 24-h-fasted animals.


Sign in / Sign up

Export Citation Format

Share Document