Nicotinamide Prevents Interleukin-1 Effects on Accumulated Insulin Release and Nitric Oxide Production in Rat Islets of Langerhans

Diabetes ◽  
1994 ◽  
Vol 43 (6) ◽  
pp. 770-777 ◽  
Author(s):  
H. U. Andersen ◽  
K. H. Jorgensen ◽  
J. Egeberg ◽  
T. Mandrup-Poulsen ◽  
J. Nerup
1996 ◽  
Vol 135 (3) ◽  
pp. 374-378 ◽  
Author(s):  
Renato Laffranchi ◽  
Giatgen A Spinas

Laffranchi R, Spinas GA. Interleukin 10 inhibits insulin release from and nitric oxide production in rat pancreatic islets. Eur J Endocrinol 1996;135:374–8. ISSN 0804–4643 Interleukin 10 was found to prevent cytokine-induced nitric oxide production in murine macrophages. Because, in rat islets, interleukin 1β induces β-cell dysfunction, mainly due to overproduction of nitric oxide, we studied if this effect could be counteracted by interleukin 10. Rat pancreatic islets were cultured for 24 h in the presence or absence of 0.02–20 ng/ml recombinant human interleukin 10. Interleukin 10 dose-dependently inhibited insulin secretion with maximal inhibition (27 ±4%, p < 0.05) at 2 ng/ml without impairment of islet cell viability. However, incubation of pancreatic islets with interleukin 10 resulted in a 61.5% decrease of nitric oxide production. Co-incubation of islets with interleukin 10 (2 ng/ml) and recombinant human interleukin 1β (0.15 ng/ml) resulted in a more pronounced suppression of basal insulin release than with interleukin 1β alone (55 ± 3.6% vs 44 ± 3.6% with interleukin 1β alone, p < 0.05) but did not reduce interleukin 1β-stimulated NO production or reverse the effect of interleukin 1β on cell viability. Thus, in pancreatic islets interleukin 10 is not capable of counteracting the interleukin 1β-induced β-cell dysfunction, but rather enhances the inhibitory effect of interleukin 1β by a different mechanism. Renato Laffranchi, Division of Endocrinology and Metabolism, Department of Internal Medicine, University Hospital, Rämistrasse 100, CH-8091 Zürich, Switzerland


2009 ◽  
Vol 103 (S 02) ◽  
pp. 133-135 ◽  
Author(s):  
T. Wacker ◽  
H. Jahr ◽  
S. Weinand ◽  
H. Brandhorst ◽  
D. Brandhorst ◽  
...  

1986 ◽  
Vol 113 (4) ◽  
pp. 551-558 ◽  
Author(s):  
Giatgen A. Spinas ◽  
Thomas Mandrup-Poulsen ◽  
Jens Mølvig ◽  
Leif Bæk ◽  
Klaus Bendtzen ◽  
...  

Abstract. Isolated rat islets were incubated either with crude, affinity-purified or recombinant human interleukin-1 for 1 to 6 days. A significant (20–60%) increase of insulin release was observed at low concentrations of all three interleukin-1-containing preparations. In contrast, higher concentrations dose-dependently inhibited the insulin release. The increased insulin secretion occurred at concentrations below those necessary to augment the mitogen response to phytohaemagglutinin of murine thymocytes in vitro. These doses (0.05-0.5 U/ml) correspond to 0.2-2 ng of recombinant interleukin-1 per ml, equal to approximately 0.01-0.1 pmol/ml. In doses of 0.6-1.8 U/ml affinitypurified interleukin-1 significantly increased the islet insulin content per ng of DNA, indicating a stimulation of insulin-biosynthesis. The data support the concept that low concentrations of interleukin-1 may play a role in priming the physiological secretion of insulin.


Sign in / Sign up

Export Citation Format

Share Document