scholarly journals Human Anti-CD38 Autoantibodies Raise Intracellular Calcium and Stimulate Insulin Release in Human Pancreatic Islets

Diabetes ◽  
2001 ◽  
Vol 50 (5) ◽  
pp. 985-991 ◽  
Author(s):  
A. Antonelli ◽  
G. Baj ◽  
P. Marchetti ◽  
P. Fallahi ◽  
N. Surico ◽  
...  
Pancreas ◽  
2001 ◽  
Vol 22 (1) ◽  
pp. 69-71 ◽  
Author(s):  
Josepha Fernandez-Alvarez ◽  
Dominique Hillaire-Buys ◽  
Marie-Madeleine Loubati??res-Mariani ◽  
Ramon Gomis ◽  
Pierre Petit

1996 ◽  
Vol 109 (9) ◽  
pp. 2265-2273 ◽  
Author(s):  
R. Regazzi ◽  
M. Ravazzola ◽  
M. Iezzi ◽  
J. Lang ◽  
A. Zahraoui ◽  
...  

We examined the presence of small molecular mass GTP-binding proteins of the Rab3 family in different insulin-secreting cells. Rab3B and Rab3C were identified by western blotting in rat and in human pancreatic islets, in two rat insulin-secreting cell lines, RINm5F and INS-1, as well as in the hamster cell line HIT-T15. In contrast, Rab3A was detected in rat pancreatic islets as well as in the two insulin-secreting rat cell lines but not in human pancreatic islets and was only barely discernible in HIT-T15 cells. These findings were confirmed by two-dimensional gel electrophoresis followed by GTP-overlay of homogenates of pancreatic islets and of the purified protein. Northern blotting analysis revealed that Rab3D is expressed in the same insulin-secreting cells as Rab3A. Separation of the cells of the rat islets by fluorescence-activated cell sorting demonstrated that Rab3A was exclusively expressed in beta-cells. Rab3A was found to be associated with insulin-containing secretory granules both by immunofluorescence, immunoelectron microscopy and after sucrose density gradient. Overexpression in HIT-T15 cells of a Rab3A mutant deficient in GTP hydrolysis inhibited insulin secretion stimulated by a mixture of nutrients and bombesin. Insulin release triggered by these secretagogues was also slightly decreased by the overexpression of wild-type Rab3A but not by the overexpression of wild-type Rab5A and of a Rab5A mutant deficient in GTP hydrolysis. Finally, we studied the expression in insulin-secreting cells of rabphilin-3A, a putative effector protein that associates with the GTP-bound form of Rab3A. This Rab3A effector was not detectable in any of the cells investigated in the present study. Taken together these results indicate an involvement of Rab3A in the control of insulin release in rat and hamster. In human beta-cells, a different Rab3 isoform but with homologous function may replace Rab3A.


1997 ◽  
Vol 34 (1) ◽  
pp. 46-48 ◽  
Author(s):  
R. Lupi ◽  
P. Marchetti ◽  
R. Giannarelli ◽  
A. Coppelli ◽  
C. Tellini ◽  
...  

1997 ◽  
Vol 82 (8) ◽  
pp. 2660-2663
Author(s):  
Décio L. Eizirik ◽  
Leif Jansson ◽  
Malin Flodström ◽  
Claes Hellerström ◽  
Arne Andersson

1990 ◽  
Vol 259 (4) ◽  
pp. E548-E554 ◽  
Author(s):  
M. J. MacDonald ◽  
L. A. Fahien ◽  
D. I. McKenzie ◽  
S. M. Moran

Agents that stimulate insulin release from fresh pancreatic islets were tested for their ability to capacitate pancreatic islets to secrete insulin and to support beta-cell survival in tissue culture. Capacitation was defined as the ability to release insulin after 24 h in culture in the presence of an insulinotropic concentration of a secretagogue. Viable islets that lose glucose-induced insulin release gradually regain it during culture for 24 h in 20 mM glucose. Survival was defined as the ability to regain glucose-induced insulin release. To measure insulin release after culture, islets were incubated with various secretagogues in Krebs-Ringer buffer for 1 h. Examples of the diverse patterns of responses included the following. Glucose was the only secretagogue that capacitated glucose-induced release. Leucine-, leucine plus glutamine-, and glyceraldehyde-induced release remained capacitated after culture with no secretagogue. Culture at high glucose completely inhibited leucine-induced release. Culture at low glucose (1 mM) or at both high leucine and glutamine abolished glucose-induced release. Only leucine and glutamine capacitated monomethyl succinate-induced release. All agents including subinsulinotropic glucose (1 mM), except D-glyceraldehyde, permitted islet survival. Thus the metabolic pathways for initiation, capacitation, and survival are not identical between and within secretagogues. There is a reciprocal relationship between leucine and glucose with respect to capacitation. Capacitation follows a time course, which suggests that it is regulated by enzyme induction.


1987 ◽  
Vol 252 (6) ◽  
pp. E727-E733
Author(s):  
S. M. el Motal ◽  
M. C. Pian-Smith ◽  
G. W. Sharp

The effects of tetracaine on insulin release and 45Ca2+ handling by rat pancreatic islets have been studied under basal (2.8 mM glucose), glucose-stimulated (5.6, 8.3, and 16.7 mM glucose), and 3-isobutyl-1-methylxanthine (IBMX)-stimulated conditions. Islets were isolated by the use of collagenase and used either directly (freshly isolated islets) or after a period under tissue culture conditions. Tetracaine was found to stimulate insulin release under basal conditions, to inhibit glucose-stimulated insulin release, and to potentiate insulin release stimulated by IBMX. In studies on the mechanisms underlying these effects, tetracaine was found to decrease glucose-stimulated net retention of 45Ca2+ (by an action to block the voltage-dependent Ca channels) and to mobilize Ca2+ from intracellular stores. These two actions form the basis for the inhibition of glucose-stimulated insulin release, which depends heavily on Ca2+ entry via the voltage-dependent channels and the synergism with IBMX to potentiate release. No inhibition of IBMX-stimulated release occurs because IBMX does not use the voltage-dependent channels to raise intracellular Ca2+.


2008 ◽  
Vol 283 (47) ◽  
pp. 32188-32197 ◽  
Author(s):  
Santina Bruzzone ◽  
Nicoletta Bodrato ◽  
Cesare Usai ◽  
Lucrezia Guida ◽  
Iliana Moreschi ◽  
...  

2017 ◽  
Vol 115 (1) ◽  
pp. 232-245 ◽  
Author(s):  
Peter Buchwald ◽  
Alejandro Tamayo-Garcia ◽  
Vita Manzoli ◽  
Alice A. Tomei ◽  
Cherie L. Stabler

2008 ◽  
Vol 294 (2) ◽  
pp. C442-C450 ◽  
Author(s):  
Michael J. MacDonald ◽  
Melissa J. Longacre ◽  
Scott W. Stoker ◽  
Laura J. Brown ◽  
Noaman M. Hasan ◽  
...  

Mitochondrial anaplerosis is important for insulin secretion, but only some of the products of anaplerosis are known. We discovered novel effects of mitochondrial metabolites on insulin release in INS-1 832/13 cells that suggested pathways to some of these products. Acetoacetate, β-hydroxybutyrate, α-ketoisocaproate (KIC), and monomethyl succinate (MMS) alone did not stimulate insulin release. Lactate released very little insulin. When acetoacetate, β-hydroxybutyrate, or KIC were combined with MMS, or either ketone body was combined with lactate, insulin release was stimulated 10-fold to 20-fold the controls (almost as much as with glucose). Pyruvate was a potent stimulus of insulin release. In rat pancreatic islets, β-hydroxybutyrate potentiated MMS- and glucose-induced insulin release. The pathways of their metabolism suggest that, in addition to producing ATP, the ketone bodies and KIC supply the acetate component and MMS supplies the oxaloacetate component of citrate. In line with this, citrate was increased by β-hydroxybutyrate plus MMS in INS-1 cells and by β-hydroxybutyrate plus succinate in mitochondria. The two ketone bodies and KIC can also be metabolized to acetoacetyl-CoA and acetyl-CoA, which are precursors of other short-chain acyl-CoAs (SC-CoAs). Measurements of SC-CoAs by LC-MS/MS in INS-1 cells confirmed that KIC, β-hydroxybutyrate, glucose, and pyruvate increased the levels of acetyl-CoA, acetoacetyl-CoA, succinyl-CoA, hydroxymethylglutaryl-CoA, and malonyl-CoA. MMS increased incorporation of 14C from β-hydroxybutyrate into citrate, acid-precipitable material, and lipids, suggesting that the two molecules complement one another to increase anaplerosis. The results suggest that, besides citrate, some of the products of anaplerosis are SC-CoAs, which may be precursors of molecules involved in insulin secretion.


Sign in / Sign up

Export Citation Format

Share Document