Inflammation-Induced Preterm Birth in a Murine Model is Associated with Increases in Fetal Macrophages and Circulating Erythroid Precursors

2010 ◽  
Vol 13 (4) ◽  
pp. 273-281 ◽  
Author(s):  
Linda M. Ernst ◽  
Juan Gonzalez ◽  
Ella Ofori ◽  
Michal Elovitz
2022 ◽  
Vol 226 (1) ◽  
pp. S9
Author(s):  
Katherine M. Leonard ◽  
Elisabeth Dornisch ◽  
Jennifer Damicis ◽  
Irina Burd ◽  
Jason Pates ◽  
...  

2012 ◽  
Vol 119 ◽  
pp. S263-S263
Author(s):  
K. Abhichandani ◽  
N. Shah ◽  
S. Sundaram ◽  
C.-H. Chen ◽  
H. Yen ◽  
...  
Keyword(s):  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah M. Estrada ◽  
Andrew S. Thagard ◽  
Mary J. Dehart ◽  
Jennifer R. Damicis ◽  
Elisabeth M. Dornisch ◽  
...  

AbstractPrematurity is associated with perinatal neuroinflammation and injury. Screening for genetic modulators in an LPS murine model of preterm birth revealed the upregulation of Nr4a1, an orphan nuclear transcription factor that is normally absent or limited in embryonic brains. Concurrently, Nr4a1 was downregulated with magnesium sulfate (MgSO4) and betamethasone (BMTZ) treatments administered to LPS exposed dams. To understand the role of Nr4a1 in perinatal brain injury, we compared the preterm neuroinflammatory response in Nr4a1 knockout (KO) versus wild type (wt) mice. Key inflammatory factors Il1b, Il6 and Tnf, and Iba1+ microglia were significantly lower in Nr4a1 KO versus wt brains exposed to LPS in utero. Treatment with MgSO4/BMTZ mitigated the neuroinflammatory process in wt but not Nr4a1 KO brains. These results correspond with a reduction in cerebral hemorrhage in wt but not mutant embryos from dams given MgSO4/BMTZ. Further analysis with Nr4a1-GFP-Cre × tdTomato loxP reporter mice revealed that the upregulation of Nr4a1 with perinatal neuroinflammation occurs in the cerebral vasculature. Altogether, this study implicates Nr4a1 in the developing vasculature as a potent mediator of neuroinflammatory brain injury that occurs with preterm birth. It is also possible that MgSO4/BMTZ mitigates this process by direct or indirect inhibition of Nr4a1.


2021 ◽  
Author(s):  
Zeng-Hui Wei ◽  
Oluwabukola Salami ◽  
Jagadish Koya ◽  
Swapna Munnangi ◽  
Ryan Pekson ◽  
...  

Abstract Preterm birth accounts for the majority of perinatal mortality worldwide and there remains no FDA-approved drug to prevent it. Recently, we discovered that the common drug excipient, N,N-dimethylacetamide (DMA), prevents inflammation–induced preterm birth in mice by inhibiting NF-κB. Since we reported this finding it has come to light that a group of widely used, structurally related aprotic solvents, including DMA, N-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF), have anti-inflammatory efficacy. We show here that DMF suppresses LPS-induced TNFα secretion from RAW 264.7 cells and IL-6 and IL-8 secretion from HTR-8 cells at concentrations that do not significantly affect cell viability. In vivo, DMF decreases LPS-induced inflammatory cell infiltration and expression of TNFα and IL-6 in the placental labyrinth, all to near baseline levels. Finally, DMF decreases the rate of preterm birth in LPS-induced pregnant mice (P<.0001) and the rate at which pups are spontaneously aborted (P<.0001). In summary, DMF, a widely used solvent structurally related to DMA and NMP, prevents LPS-induced preterm birth in a murine model without overt toxic or teratogenic effects. Re-purposing the DMA/DMF/NMP family of small molecules as anti-inflammatory drugs is a promising new approach to preventing inflammation–induced preterm birth and potentially other inflammatory disorders as well.


Blood ◽  
2012 ◽  
Vol 120 (1) ◽  
pp. 166-172 ◽  
Author(s):  
Ann Mullally ◽  
Luke Poveromo ◽  
Rebekka K. Schneider ◽  
Fatima Al-Shahrour ◽  
Steven W. Lane ◽  
...  

Abstract In the current model of the pathogenesis of polycythemia vera (PV), the JAK2V617F mutation arises in hematopoietic stem cells (HSCs) that maintain the disease, while erythroid precursor populations expand, resulting in excessive red blood cell production. We examined the role of these specific cell populations using a conditional Jak2V617F knockin murine model. We demonstrate that the most immature long-term (LT) HSCs are solely responsible for initiating and maintaining the disease in vivo and that Jak2V617F mutant LT-HSCs dominate hematopoiesis over time. When we induced Jak2V617F expression in erythropoietin receptor expressing precursor cells, the mice developed elevated hematocrit, expanded erythroid precursors, and suppressed erythropoietin levels. However, the disease phenotype was significantly attenuated compared with mice expressing Jak2V617F in LT-HSCs. In addition to developing a PV phenotype, all mice transplanted with Jak2V617F LT-HSCs underwent myelofibrotic transformation over time. These findings recapitulate the development of post-PV myelofibrosis in human myeloproliferative neoplasms. In aggregate, these results demonstrate the distinct roles of LT-HSCs and erythroid precursors in the pathogenesis of PV.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 749-749
Author(s):  
Rajasekhar NVS Suragani ◽  
Robert Li ◽  
Sharon Cawley ◽  
R. Scott Pearsall ◽  
Ravi Kumar

Abstract Myelodysplastic syndromes (MDS) are caused due to abnormal proliferation and differentiation of pluripotent hematopoietic stem cells leading to peripheral cytopenias including anemia and an increased risk of progression to acute myelogenous leukemia (AML). The mainstay of anemia treatments for majority of non-del (5q) patients are frequent transfusions but often leads to iron overloading and enhanced progression to AML, causing a negative impact on overall survival (OS). Therefore, alternative therapies that promote effective erythropoiesis, decrease anemia, and improve OS, are needed. Members of the TGF-β superfamily are known regulators of erythropoiesis. ACE-536 is a modified soluble activin receptor type IIB-Fc fusion protein that acts as a ligand trap for certain TGF-β family ligands and prevents Smad 2/3 signaling. ACE-536 has shown a robust increase in RBCs in mice, rats and monkeys. In normal mice, ACE-536 promotes maturation but not proliferation of late stage erythroid precursors. Additionally, we have shown that RAP-536 (murine ortholog of ACE-536) corrected anemia in the NUP98-HOXD13 (NHD13) murine model of MDS. In this study, we evaluated the progression of MDS disease and OS of NHD13 mice administered RAP-536. NHD13 mice begin to develop anemia, neutropenia and lymphopenia at four months of age. NHD13 mice die by 14 months due to severe pancytopenia or progression to AML. In this study, 4-month old NHD13 mice (N=12-16/group) were dosed with RAP-536 (10 mg/kg) or vehicle (VEH) twice per week for 5 or 10 months. Age matched wild type mice were used as controls. At each time point, blood samples were collected for CBCs. Bone marrow and splenic hematopoietic precursors of various cell lineages were immuno-stained and analyzed by flow cytometry (FCM). Spleen sections, blood and bone marrow smears were also analyzed for histopathological changes. After 5 months of treatment, VEH treated NHD13 mice had decreased RBC (-19.6%, P<0.001), WBC (-30.8%, P<0.001), lymphocytes (-63.2%, P<0.001) and increased platelet counts (+89.2%, P<0.05) compared to wild type mice. Treatment with RAP-536 increased RBC (+7.2%, P<0.05) and reduced platelet counts compared to VEH control. No significant changes in other blood lineages were observed following RAP-536 treatment, demonstrating that RAP-536 is selective of the erythroid lineage. After 10 months of treatment, VEH treated NHD13 mice had severely decreased RBC (-32.9%) and hemoglobin (-21.8%) compared to wild-type mice. RAP-536 treatment increased RBC (+21.4%) and hemoglobin (+16.6%) compared to VEH treatment. FCM evaluation of erythroid precursors from bone marrow of NHD13 mice demonstrated increased immature CD71+Ter119+ erythroblasts (from 13.1% to 18.3%), and decreased mature CD71-Ter119+ erythroblasts (from 13.2% to 3.8%) compared to wild-type mice. Treatment with RAP-536 increased mature erythroblasts (from 3.8% to 9.6%) consistent with improved RBC parameters, indicating the stimulation of erythroid differentiation. Additionally, bone marrow from NHD13 mice had significantly elevated Gr1+ & CD11b+ (from 33.6% to 62.6%) and CD4+ & CD8+(from 19.1% to 32.3%) precursors, while peripheral blood displayed a concomitant decreases in granulocytes (-22.5%), WBC (-37.5%) and lymphocytes (-45%) compared to wild type mice, demonstrating ineffective hematopoiesis. Treatment with RAP-536 displayed a non-statistical decrease in these precursors in bone marrow and a similar increase in peripheral blood compared to VEH control. No changes in platelets were observed after ten months of treatment. These data suggests that the effect of RAP-536 on other hematopoietic lineages is likely secondary to its effect on erythropoiesis. Importantly, histopathological findings revealed no indication of increased leukemic progression in RAP-536 treated NHD13 mice compared to VEH treated mice. Furthermore, RAP-536 treated NHD13 mice demonstrated a trend for increased median survival compared to VEH treated mice, from 238 days to 277 days (P=0.08). Together, these data demonstrate that RAP-536 corrects anemia associated with ineffective erythropoiesis in NHD13 mouse model of MDS. RAP-536 does not enhance progression to AML, and may increase overall survival of NHD13 mice. ACE-536 is currently being evaluated for the treatment of anemia in patients with MDS and β-thalassemia, conditions characterized by ineffective erythropoiesis. Disclosures: Suragani: Acceleron Pharma Inc: Employment, Equity Ownership. Li:Acceleron Pharma Inc: Employment, Equity Ownership. Cawley:Acceleron Pharma Inc: Employment, Equity Ownership. Pearsall:Acceleron Pharma Inc: Employment, Equity Ownership. Kumar:Acceleron Pharma Inc: Employment, Equity Ownership.


2020 ◽  
Vol 190 (2) ◽  
pp. 295-305 ◽  
Author(s):  
Hannah C. Zierden ◽  
Jairo I. Ortiz Ortiz ◽  
Peter Dimitrion ◽  
Victoria Laney ◽  
Sabrine Bensouda ◽  
...  
Keyword(s):  

2015 ◽  
Vol 185 (3) ◽  
pp. 862-869 ◽  
Author(s):  
Vibhuti Vyas ◽  
Charles R. Ashby ◽  
Nicole S. Olgun ◽  
Sruthi Sundaram ◽  
Oluwabukola Salami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document