scholarly journals A Thrombospondin-1 Antagonist of Transforming Growth Factor-β Activation Blocks Cardiomyopathy in Rats with Diabetes and Elevated Angiotensin II

2007 ◽  
Vol 171 (3) ◽  
pp. 777-789 ◽  
Author(s):  
Souad Belmadani ◽  
Juan Bernal ◽  
Chih-Chang Wei ◽  
Manuel A. Pallero ◽  
Louis Dell'Italia ◽  
...  
2020 ◽  
Vol 13 (639) ◽  
pp. eaba3880 ◽  
Author(s):  
Cyril Anastasi ◽  
Patricia Rousselle ◽  
Maya Talantikite ◽  
Agnès Tessier ◽  
Caroline Cluzel ◽  
...  

Bone morphogenetic protein 1 (BMP-1) is an important metalloproteinase that synchronizes growth factor activation with extracellular matrix assembly during morphogenesis and tissue repair. The mechanisms by which BMP-1 exerts these effects are highly context dependent. Because BMP-1 overexpression induces marked phenotypic changes in two human cell lines (HT1080 and 293-EBNA cells), we investigated how BMP-1 simultaneously affects cell-matrix interactions and growth factor activity in these cells. Increasing BMP-1 led to a loss of cell adhesion that depended on the matricellular glycoprotein thrombospondin-1 (TSP-1). BMP-1 cleaved TSP-1 between the VWFC/procollagen-like domain and the type 1 repeats that mediate several key TSP-1 functions. This cleavage induced the release of TSP-1 C-terminal domains from the extracellular matrix and abolished its previously described multisite cooperative interactions with heparan sulfate proteoglycans and CD36 on HT1080 cells. In addition, BMP-1–dependent proteolysis potentiated the TSP-1–mediated activation of latent transforming growth factor–β (TGF-β), leading to increased signaling through the canonical SMAD pathway. In primary human corneal stromal cells (keratocytes), endogenous BMP-1 cleaved TSP-1, and the addition of exogenous BMP-1 enhanced cleavage, but this had no substantial effect on cell adhesion. Instead, processed TSP-1 promoted the differentiation of keratocytes into myofibroblasts and stimulated production of the myofibroblast marker α-SMA, consistent with the presence of processed TSP-1 in human corneal scars. Our results indicate that BMP-1 can both trigger the disruption of cell adhesion and stimulate TGF-β signaling in TSP-1–rich microenvironments, which has important potential consequences for wound healing and tumor progression.


Hypertension ◽  
2005 ◽  
Vol 46 (5) ◽  
pp. 1180-1185 ◽  
Author(s):  
Kan Saito ◽  
Nobukazu Ishizaka ◽  
Masumi Hara ◽  
Gen Matsuzaki ◽  
Masataka Sata ◽  
...  

2017 ◽  
Vol 37 (11) ◽  
pp. 2102-2113 ◽  
Author(s):  
Stoyan N. Angelov ◽  
Jie Hong Hu ◽  
Hao Wei ◽  
Nathan Airhart ◽  
Minghui Shi ◽  
...  

Objective— The role of TGF-β (transforming growth factor-β) signaling in abdominal aortic aneurysm (AAA) formation is controversial. Others reported that systemic blockade of TGF-β by neutralizing antibodies accelerated AAA development in angiotensin II-infused mice. This result is consistent with other studies suggesting that TGF-β signaling prevents AAA. Development of a therapy for AAA that exploits the protective actions of TGF-β would be facilitated by identification of the mechanisms through which TGF-β prevents AAA. We hypothesized that TGF-β signaling prevents AAA by its actions on aortic medial smooth muscle cells. Approach and Results— We compared the prevalence, severity, and histopathology of angiotensin II-induced AAA among control mice (no TGF-β blockade), mice with antibody-mediated systemic neutralization of TGF-β, and mice with genetically based smooth muscle–specific loss of TGF-β signaling. Surprisingly, we found that systemic—but not smooth muscle–specific—TGF-β blockade significantly increased the prevalence of AAA and tended to increase AAA severity, adventitial thickening, and aortic wall macrophage accumulation. In contrast, abdominal aortas of mice with smooth muscle–specific loss of TGF-β signaling differed from controls only in having a thinner media. We examined thoracic aortas of the same mice. Here we found that smooth muscle–specific loss of Tgfbr2 —but not systemic TGF-β neutralization—significantly accelerated development of aortic pathology, including increased prevalence of intramural hematomas, medial thinning, and adventitial thickening. Conclusion— Our results suggest that TGF-β signaling prevents both abdominal and thoracic aneurysmal disease but does so by distinct mechanisms. Smooth muscle extrinsic signaling protects the abdominal aorta and smooth muscle intrinsic signaling protects the thoracic aorta.


Sign in / Sign up

Export Citation Format

Share Document