scholarly journals Decrease in the Carbon Consumption of a Commercial Blast Furnace by Using Carbon Composite Iron Ore

2014 ◽  
Vol 100 (5) ◽  
pp. 601-609 ◽  
Author(s):  
Hirokazu Yokoyama ◽  
Kenichi Higuchi ◽  
Takashi Ito ◽  
Akiyoshi Oshio
2012 ◽  
Vol 52 (11) ◽  
pp. 2000-2006 ◽  
Author(s):  
Hirokazu Yokoyama ◽  
Kenichi Higuchi ◽  
Takashi Ito ◽  
Akiyoshi Oshio

2003 ◽  
Vol 43 (12) ◽  
pp. 1904-1912 ◽  
Author(s):  
Yoshiyuki Matsui ◽  
Muneyoshi Sawayama ◽  
Akito Kasai ◽  
Yoshiaki Yamagata ◽  
Fumio Noma

2011 ◽  
Vol 51 (8) ◽  
pp. 1333-1335 ◽  
Author(s):  
Akito Kasai ◽  
Hitoshi Toyota ◽  
Kentaro Nozawa ◽  
Shuji Kitayama

2011 ◽  
Vol 82 (5) ◽  
pp. 521-528 ◽  
Author(s):  
Chu Man-sheng ◽  
Liu Zheng-gen ◽  
Wang Zhao-cai ◽  
Yagi Jun-ichiro

Author(s):  
I. F. Iskakov ◽  
G. A. Kunitsyn ◽  
D. V. Lazarev ◽  
А. А. Red`kin ◽  
S. A. Trubitsyn ◽  
...  

To use effectively internal raw material base, JSC “Ural Steel” accomplished I category major overhaul of the blast furnace No. 2. The main purpose of the overhaul was to design a rational profile which could ensure an ability to operate with a charge containing 95 % of Mikhailovskii GOK (mining and concentrating plant) pellets having basicity of 0.5 by CaO/SiO2. The blast furnace No. 2 having useful volume of 1232 m3, was constructed by design of Danieli Corus, the Netherlands, and was blown in on December 30, 2020. In the process of guarantee tests, step-by-step increase of Mikhailovskii GOK pellets (Fetotal = 60.5 %, CaO/SiO2 = 0.5) content in the charge iron ore part was being accomplished from 55 to 95.1%. Charging of the blend containing pellets in the amount of 55% of iron ore part, was done by charging system 4OOCC + 1COOCC (Ore - Coke) with filling level 1.5 m. Under conditions of pellets part increase in the blend, the charging system was changed to decrease their content at the periphery, to increase it in the ore ridge zone and make it intermediate between periphery and the ore ridge. At the pellets share in the iron ore raw materials 0.75 the charging system was used as the following: 3OOCC + 1COOC + 1COOCC, while at the content 95.1% the following charging system was used: 2COOC + 2COOC + 1COOCC. It was noted that in the period of guarantee tests the furnace running was smooth. The average silicon content in the hot metal was 0.70% at the standard deviation 0.666. Sulfur content in the hot metal did not exceed 0.024%, the blowing and natural gas consumption figures were 2100 m3/min and 11000 m3/min correspondently, oxygen content in the blowing 26.5%, hot blowing and top smoke pressure figures were 226.5 and 109.8 KPa correspondently. The productivity of the furnace was reached as high as 2358 t/day at the specific coke rate 433 kg/t of hot metal. After guarantee tests completion, the pellets content in the iron ore part was decreased gradually from 95 down to 50%. The decreasing was made by 5% in every 6 hours of operation. Application of the mastered technology of the blast furnace No. 2 with the increased share of pellets will enable to stably supply the blast furnaces No. 1, 3 and 4 by iron ore raw materials in the proportion of 30-35% of pellets and 65-70% of sinter.


2019 ◽  
Vol 342 ◽  
pp. 214-223 ◽  
Author(s):  
Wei Zhao ◽  
Mansheng Chu ◽  
Hongtao Wang ◽  
Zhenggen Liu ◽  
Jue Tang ◽  
...  

2001 ◽  
Vol 44 (11-12) ◽  
pp. 69-75 ◽  
Author(s):  
B. Grüneberg ◽  
J. Kern

The suitability of iron-ore and blast furnace slag for subsurface flow (SSF) constructed wetlands was studied over a period of four months. Dairy farm wastewater (TP 45 mg l-1) was percolated through buckets planted with reed (volume 9.1 l; hydraulic load 15 l m-2d-1). One group of buckets was kept under aerobic conditions and the other group under anaerobic conditions, monitored by continuous redox potential measurements. Even at high mass loading rates of 0.65 g P m-1d-1 the slag provided 98% removal efficiency and showed no decrease in performance with time. However, phosphorus fractionation data indicate that the high phosphorus retention capacity under aerobic conditions is to a great extent attributable to unstable sorption onto calcium compounds (NH4Cl-P). Phosphorus sorption of both the slag (200 μg P g-1) and the iron-ore (140 μg P g-1) was promoted by predominantly anaerobic conditions due to continuous formation of amorphous ferrous hydroxides. None of the substrates had adverse affects on reed growth.


2015 ◽  
Vol 51 (2) ◽  
pp. 143-151 ◽  
Author(s):  
K.X. Jiao ◽  
J.L. Zhang ◽  
Z.J. Liu ◽  
Y.G. Zhao ◽  
X.M. Hou

A type of carbon composite brick was produced via the microporous technique using natural flack graphite, ?-Al2O3 and high-quality bauxite chamotte (Al2O3?87 mass%) as raw materials with fine silicon powder as additive. The composition and microstructure of the obtained carbon composite were characterized using chemical analysis, XRD and SEM with EDS. The high temperature properties of thermal conductivity, oxidization and corrosion by molten slag and hot metal of the composite were analyzed. Based on these, the type of carbon composite brick worked in a blast furnace hearth for six years was further sampled at different positions. The protective layer was found and its chemical composition and microscopic morphology were investigated. It is found that the carbon composite brick combines the good properties of both the conventional carbon block and ceramic cup refractory. The protective layer near the hot face consists of two separated sublayers, i.e. the slag layer and the carbon layer. A certain amount of slag phase is contained in the carbon layer, which is caused by the reaction of coke ash with the refractory. No obvious change in the chemical composition of the protective layer along the depth of the sidewall is found. This work provides a useful guidance for the extension of the lifetime of blast furnace hearths.


Sign in / Sign up

Export Citation Format

Share Document