scholarly journals Effects of Particle Velocity, Particle Mass Flow Rate and Liquid Velocity on Penetration Phenomena of Fine Particles into Liquid

2021 ◽  
Vol 107 (8) ◽  
pp. 624-632
Author(s):  
Atsushi Kushimoto ◽  
Shuhei Kasahara
2011 ◽  
Vol 239-242 ◽  
pp. 2142-2148
Author(s):  
Hui Min Tan ◽  
Jian Jun Wang ◽  
You Hai Jin

Based on experimental and computational fluid dynamics analysis, the phenomenon of particle back-mixing near the dust outlet in cyclone separator with tangential inlet was studied. The results show that particle back-mixing appears near the dust outlet geometry. Particle back-mixing can be divided into dust hopper back-mixing and discharge cone back-mixing for different generation mechanism. The upward flow coming from dust hopper, which occupies 17.7% of the inlet gas, can induce dust hopper back-mixing. The particle mass flow rate that caused by dust hopper back-mixing occupies 46.6% of total inlet particle mass flow rate. Precessing vortex core, bias flow and high turbulent intensity near the dust outlet can induce discharge cone back-mixing. For both dust hopper back-mixing and discharge cone back-mixing, particle back-mixing is serious near the dust outlet geometry, which occupies 56.8% of total inlet particle mass flow rate. Particle which is smaller than 18μm can mix backward. The axial distribution of particle concentration decreases sharply in a range of 1.5 D (cyclone diameter) height above the dust discharge port. At last, only 2.6% of back-mixing particles with diameter no bigger than 13μm escape from vortex finder. This effect on separator efficiency increases with the particle diameter decreases.


1968 ◽  
Vol 33 (1) ◽  
pp. 131-149 ◽  
Author(s):  
John H. Neilson ◽  
Alastair Gilchrist

Among the parameters which determine the erosion damage sustained by the walls of a nozzle, in which a mixture of gas and particles is flowing is the speed attained by the particle before collision with the wall surface. This work is concerned with the determination of the particle velocity, and a number of relationships are given from which the variation in particle velocity can be obtained for a variety of gas conditions. The changes of state and velocity of the gas, occasioned by the interchange of heat and work between the gas and the particles are dependent on the ratio of the mass flow rate of particles to the mass flow rate of gas. It is shown that if this ratio is small the particle velocity may be obtained without serious error by assuming that the gas conditions are not affected by the presence of particles. Figures for the limiting value of this ratio for certain flows are given. The effects of particle size, density and initial relative velocity are investigated analytically and experimentally.


2014 ◽  
Vol 53 (23) ◽  
pp. 9938-9948 ◽  
Author(s):  
Lelu He ◽  
Yefeng Zhou ◽  
Zhengliang Huang ◽  
Jingdai Wang ◽  
Musango Lungu ◽  
...  

Author(s):  
Lindsey Yue ◽  
Nathan Schroeder ◽  
Clifford K. Ho

Abstract Falling particle receivers are an emerging technology for use in concentrating solar power systems. In this work, a staggered angle iron receiver concept is investigated, with the goals of increasing particle curtain stability and opacity in a receiver. The concept consists of angle iron-shaped troughs placed in line with a falling particle curtain in order to collect particles and rerelease them, decreasing the downward velocity of the particles and the curtain spread. A particle flow test apparatus has been fabricated. The effect of staggered angle iron trough geometry, orientation, and position on the opacity and uniformity of a falling particle curtain for different particle linear mass flow rates is investigated using the particle flow test apparatus. For the baseline free falling curtain and for different trough configurations, particle curtain transmissivity is measured, and profile images of the particle curtain are taken. Particle mass flow rate and trough position affect curtain transmissivity more than trough orientation and geometry. Optimal trough position for a given particle mass flow rate can result in improved curtain stability and decreased transmissivity. The case with a slot depth of 1/4″, hybrid trough geometry at 36″ below the slot resulted in the largest improvement over the baseline curtain: 0.40 transmissivity for the baseline and 0.14 transmissivity with the trough. However, some trough configurations have a detrimental effect on curtain stability and result in increased curtain transmissivity and/or substantial particle bouncing.


Author(s):  
Brantley Mills ◽  
Clifford K. Ho

Novel particle release patterns have been proposed as a means to increase the thermal efficiency of high-temperature falling particle receivers. Innovative release patterns offer the ability to utilize light-trapping and volumetric heating effects as a means to increase particle temperatures over a conventional straight-line particle release pattern. The particle release patterns explored in this work include wave-like patterns and a series of parallel curtains normal to the incident irradiation that have shown favorable results in previous numerical studies at lower particle temperatures. A numerical model has recently been developed of an existing falling particle receiver at the National Solar Thermal Test Facility at Sandia National Laboratories to evaluate these patterns at elevated temperatures necessary to evaluate radiative and convective losses. This model has demonstrated that thermal efficiency gains of 2.5–4.6% could be realized using these patterns compared to the conventional planar release depending on the particle mass flow rate. Increasing the number of parallel curtains, increasing the spacing between curtains, and shifting the particle mass flow rate deeper in the receiver cavity was also found to increase the thermal efficiency. These effects became less significant as the particle mass flow rate increased.


Author(s):  
V.N. Petrov ◽  
◽  
V.F. Sopin ◽  
L.A. Akhmetzyanova ◽  
Ya.S. Petrova ◽  
...  

Author(s):  
Roberto Bruno Bossio ◽  
Vincenzo Naso ◽  
Marian Cichy ◽  
Boleslaw Pleszewski
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document