tangential inlet
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2288
Author(s):  
Jie Kou ◽  
Zhaoming Jiang ◽  
Yiying Cong

An innovative axial hydrocyclone separator was designed in which a guide vane was installed to replace a conventional tangential inlet, potentially aggravating inlet turbulence. The characteristics of velocity distribution, concentration distribution, and pressure distribution inside the separator were obtained through the numerical simulation of the turbulent flow of oil and water. The results showed that the flow field presented good symmetry, which eliminated the eccentric turbulence phenomenon in the conventional hydrocyclone separators and was beneficial for the oil–water separation.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 504
Author(s):  
Zhou Yang ◽  
Jinbu Yin ◽  
Yangliang Lu ◽  
Zhiming Liu ◽  
Haoyu Yang ◽  
...  

Vortex drop shaft (VDS) spillways are eco-friendly hydraulic structures used for safely releasing flood. However, due to the complexity of the three-dimensional rotational flow and the lack of suitable measuring devices, current experimental work cannot interpret the flow behavior reliably inside the VDS spillway, consequently experimental and CFD study on a VDS spillway with an elliptical tangential inlet was conducted to further discern the interior three-dimensional flow behavior. Hydraulic characteristics such as wall pressure, swirl angle, annular hydraulic height and Froude number of the tapering section are experimentally obtained and acceptably agreed with the numerical prediction. Results indicated that the relative dimensionless maximum height of the standing wave falls off nearly linearly with the increasing Froude number. Nonlinear regression was established to give an estimation of the minimum air-core rate. The normalized height of the hydraulic jump depends on the flow phenomena of pressure slope. Simulated results sufficiently reveal the three-dimensional velocity field (resultant velocity, axial velocity, tangential velocity and radial velocity) with obvious regional and cross-sectional variations inside the vortex drop shaft. It is found that cross-sectional tangential velocity varies, resembling the near-cavity forced vortex and near-wall free vortex behavior. Analytic calculations for the cross-sectional pressure were developed and correlated well with simulated results.


2020 ◽  
Vol 82 (5) ◽  
Author(s):  
Pasymi ◽  
Yogi Wibisono Budhi ◽  
Yazid Bindar

Miscanthus is a bioenergy crop that is very easy to cultivate. It has high volatile content with an average energy value of about 18.8 MJ/kg on a dry basis. With the benefits mentioned above, Miscanthus is potential as a fuel for the suspended furnace. Therefore, the furnace design for the Miscanthus particle needs to be developed immediately. A relatively fast and low-cost technique to develop a burner furnace design is the modeling. This study aims to determine the intrinsic parameter values of dry Miscanthus particles needed in cold particle dynamic modeling. The various reasonable experimental techniques were used to obtain these parameter’s values. Then, a series of simulations and experiments of dry chopped Miscanthus dynamic in a special burner was conducted to assess the conformity of these values. The intrinsic parameters values of dry chopped Miscanthus obtained are as follows; shape factor (fs) 0.52, true particle density (ρp) 245 kg m-3, minimum, maximum, and mean particle diameters (dp) 106, 9520, and 1384 µm respectively, and spread parameter (n) 1.22. Qualitatively, the particle dynamic simulation results, using RSM and k-e models, showed similar particle pathlines to the experiment results, in terms of the frequency and intersection of the helical structure formed in the burner cylinder. It indicates that the intrinsic parameter values obtained in this study are reliable results and can be used for further simulation works. In addition, particle dynamics experiments and simulations also revealed that the particle pathline in the burner cylinder tend to move near the cylinder wall in a helical pattern; a single helix pattern in a single tangential inlet burner and a double helix pattern in a double tangential inlets burner. Regardless of the effect of the tangential inlet number, the helical pattern in the burner cylinder was also influenced by the initial swirl number (ISN) of the flow. The lower the ISN, the lower the helical frequency formed and vice versa. This study also proved that at low to moderate swirl intensities, the k-e turbulent model can be relied upon to model particle dynamics in a cyclone burner.


2019 ◽  
Vol 42 (2) ◽  
pp. 316-326 ◽  
Author(s):  
José Carlos G. Peres ◽  
Pamela C. Tambani ◽  
Antonio Carlos S. C. Teixeira ◽  
Roberto Guardani ◽  
Ardson dos S. Vianna

Author(s):  
Ramin Dabirian ◽  
Ilias Gavrielatos ◽  
Ram S. Mohan ◽  
Ovadia Shoham

Foaming can hinder gas-liquid separation, therefore, it is desirable to break the foam upstream of separation facilities. There are different methods to breakup foam, including chemical (utilizing defoaming agent), mechanical (such as cyclones), and thermal (by increasing temperature). Foam stability and breakup are studied in a standalone Churn Flow Coalescer (CFC) and in a Churn Flow Coalescer/Gas-Liquid Cylindrical Cyclone© (CFC/GLCC©) system. The goal is to investigate the possible improvement of the foam breakup efficiency in the GLCC© by installing a CFC upstream of the GLCC©. Testing the standalone CFC, it was found that the CFC generates more, but less stable, foam that can be broken more easily. Three different CFC’s are tested with diameters of 1″, 2″ and 3″. For the same inlet conditions, the 3″ CFC with tangential inlet was found to be the most efficient for generating less stable foam. The optimal operating conditions for this CFC are at low superficial gas velocities, namely, vsg(CFC) between 0.1 to 0.3 m/s. Higher flow rates generate smaller bubbles and more stable foam. From testing the CFC/GLCC© system, it is found that foam breakup in this system is more efficient than that of the standalone GLCC©, under the same flow conditions. The operational envelope of the CFC is predicted based on the transition boundary to churn flow developed by Taitel et al. (1980), as a function of the CFC aspect ratio (LE/D). The analysis of transition boundary between slug and churn confirm that less stable foam occurs at the left of churn flow transition boundary.


Sign in / Sign up

Export Citation Format

Share Document