scholarly journals Некоторые замечания о нестандартных методах анализа. I

Author(s):  
E.I. Gordon

This and forthcoming articles discuss two of the most known nonstandard methods of analysis---the Robinsons infinitesimal analysis and the Boolean valued analysis, the history of their origination, common features, differences, applications and prospects. This article contains a review of infinitesimal analysis and the original method of forcing. The presentation is intended for a reader who is familiar only with the most basic concepts of mathematical logic---the language of first-order predicate logic and its interpretations. It is also desirable to have some idea of the formal proofs and the Zermelo--Fraenkel axiomatics of the set theory. In presenting the infinitesimal analysis, special attention is paid to formalizing the sentences of ordinary mathematics in a first-order language for a superstructure. The presentation of the forcing method is preceded by a brief review of C.Godels result on the compatibility of the Axiom of Choice and the Continuum Hypothesis with Zermelo--Fraenkels axiomatics. The forthcoming article is devoted to Boolean valued models and to the Boolean valued analysis, with particular attention to the history of its origination.

1967 ◽  
Vol 32 (1) ◽  
pp. 23-46 ◽  
Author(s):  
H. Jerome Keisler

In this paper we continue our study, begun in [5], of the connection between ultraproducts and saturated structures. IfDis an ultrafilter over a setI, andis a structure (i.e., a model for a first order predicate logicℒ), the ultrapower ofmoduloDis denoted byD-prod. The ultrapower is important because it is a method of constructing structures which are elementarily equivalent to a given structure(see Frayne-Morel-Scott [3]). Our ultimate aim is to find out what kinds of structure are ultrapowers of. We made a beginning in [5] by proving that, assuming the generalized continuum hypothesis (GCH), for each cardinalαthere is an ultrafilterDover a set of powerαsuch that for all structures,D-prodisα+-saturated.


Author(s):  
John W. Dawson

The greatest logician of the twentieth century, Gödel is renowned for his advocacy of mathematical Platonism and for three fundamental theorems in logic: the completeness of first-order logic; the incompleteness of formalized arithmetic; and the consistency of the axiom of choice and the continuum hypothesis with the axioms of Zermelo–Fraenkel set theory.


1962 ◽  
Vol 27 (2) ◽  
pp. 171-188 ◽  
Author(s):  
Carol R. Karp

The systems of predicate logic considered here are extensions of ordinary first-order predicate logic. They were obtained by first admitting infinite conjunctions, disjunctions, and quantifications into formulas, and then adjusting the axiom schemata and rules of inference to accommodate them. In this paper, only systems with formulas of denumerable length and “formal proofs” with denumerably many steps will be discussed, though such restrictions are hardly essential. The systems with denumerable conjunctions and disjunctions, but finite quantifications, are semantically complete; i.e., valid formulas are provable. However, systems in which denumerably infinite quantifications are also allowed, are semantically incomplete.


1985 ◽  
Vol 50 (4) ◽  
pp. 903-926 ◽  
Author(s):  
John Bacon

Predicate-functor logic, as founded by W. V. Quine ([1960], [1971], [1976], [1981]), is first-order predicate logic without individual variables. Instead, adverbs or predicate functors make explicit the permutations and replications of argument-places familiarly indicated by shifting variables about. For the history of this approach, see Quine [1971, 309ff.]. With the evaporation of variables, individual constants naturally assimilate to singleton predicates or adverbs, leaving no logical subjects whatever of type 0. The orphaned “predicates” may then be taken simply as terms in the sense of traditional logic: class and relational terms on model-theoretic semantics, schematic terms on Quine's denotational or truth-of semantics. Predicate-functor logic thus stands forth as the pre-eminent first-order term logic, as distinct from propositional-quantificational logic. By the same token, it might with some justification qualify as “first-order combinatory logic”, with allowance for some categorization of the sort eschewed in general combinatory logic, the ultimate term logic.Over the years, Quine has put forward various choices of primitive predicate functors for first-order logic with or without the full theory of identity. Moreover, he has provided translations of quantificational into predicate-functor notation and vice versa ([1971, 312f.], [1981, 651]). Such a translation does not of itself establish semantic completeness, however, in the absence of a proof that it preserves deducibility.An axiomatization of predicate-functor logic was first published by Kuhn [1980], using primitives rather like Quine's. As Kuhn noted, “The axioms and rules have been chosen to facilitate the completeness proof” [1980, 153]. While this expedient simplifies the proof, however, it limits the depth of analysis afforded by the axioms and rules. Mindful of this problem, Kuhn ([1981] and [1983]) boils his axiom system down considerably, correcting certain minor slips in the original paper.


2007 ◽  
Vol 13 (2) ◽  
pp. 153-188 ◽  
Author(s):  
Akihiro Kanamori

Kurt Gödel (1906–1978) with his work on the constructible universeLestablished the relative consistency of the Axiom of Choice (AC) and the Continuum Hypothesis (CH). More broadly, he ensured the ascendancy of first-order logic as the framework and a matter of method for set theory and secured the cumulative hierarchy view of the universe of sets. Gödel thereby transformed set theory and launched it with structured subject matter and specific methods of proof. In later years Gödel worked on a variety of set theoretic constructions and speculated about how problems might be settled with new axioms. We here chronicle this development from the point of view of the evolution of set theory as a field of mathematics. Much has been written, of course, about Gödel's work in set theory, from textbook expositions to the introductory notes to his collected papers. The present account presents an integrated view of the historical and mathematical development as supported by his recently published lectures and correspondence. Beyond the surface of things we delve deeper into the mathematics. What emerges are the roots and anticipations in work of Russell and Hilbert, and most prominently the sustained motif of truth as formalizable in the “next higher system”. We especially work at bringing out how transforming Gödel's work was for set theory. It is difficult now to see what conceptual and technical distance Gödel had to cover and how dramatic his re-orientation of set theory was.


Author(s):  
Kyriakos Keremedis ◽  
Eleftherios Tachtsis ◽  
Eliza Wajch

AbstractIn the absence of the axiom of choice, the set-theoretic status of many natural statements about metrizable compact spaces is investigated. Some of the statements are provable in $$\mathbf {ZF}$$ ZF , some are shown to be independent of $$\mathbf {ZF}$$ ZF . For independence results, distinct models of $$\mathbf {ZF}$$ ZF and permutation models of $$\mathbf {ZFA}$$ ZFA with transfer theorems of Pincus are applied. New symmetric models of $$\mathbf {ZF}$$ ZF are constructed in each of which the power set of $$\mathbb {R}$$ R is well-orderable, the Continuum Hypothesis is satisfied but a denumerable family of non-empty finite sets can fail to have a choice function, and a compact metrizable space need not be embeddable into the Tychonoff cube $$[0, 1]^{\mathbb {R}}$$ [ 0 , 1 ] R .


1962 ◽  
Vol 27 (1) ◽  
pp. 58-72 ◽  
Author(s):  
Timothy Smiley

Anyone who reads Aristotle, knowing something about modern logic and nothing about its history, must ask himself why the syllogistic cannot be translated as it stands into the logic of quantification. It is now more than twenty years since the invention of the requisite framework, the logic of many-sorted quantification.In the familiar first-order predicate logic generality is expressed by means of variables and quantifiers, and each interpretation of the system is based upon the choice of some class over which the variables may range, the only restriction placed on this ‘domain of individuals’ being that it should not be empty.


1999 ◽  
Vol 9 (4) ◽  
pp. 335-359 ◽  
Author(s):  
HERMAN GEUVERS ◽  
ERIK BARENDSEN

We look at two different ways of interpreting logic in the dependent type system λP. The first is by a direct formulas-as-types interpretation à la Howard where the logical derivation rules are mapped to derivation rules in the type system. The second is by viewing λP as a Logical Framework, following Harper et al. (1987) and Harper et al. (1993). The type system is then used as the meta-language in which various logics can be coded.We give a (brief) overview of known (syntactical) results about λP. Then we discuss two issues in some more detail. The first is the completeness of the formulas-as-types embedding of minimal first-order predicate logic into λP. This is a remarkably complicated issue, a first proof of which appeared in Geuvers (1993), following ideas in Barendsen and Geuvers (1989) and Swaen (1989). The second issue is the minimality of λP as a logical framework. We will show that some of the rules are actually superfluous (even though they contribute nicely to the generality of the presentation of λP).At the same time we will attempt to provide a gentle introduction to λP and its various aspects and we will try to use little inside knowledge.


Sign in / Sign up

Export Citation Format

Share Document