Gödel, Kurt (1906–78)

Author(s):  
John W. Dawson

The greatest logician of the twentieth century, Gödel is renowned for his advocacy of mathematical Platonism and for three fundamental theorems in logic: the completeness of first-order logic; the incompleteness of formalized arithmetic; and the consistency of the axiom of choice and the continuum hypothesis with the axioms of Zermelo–Fraenkel set theory.

2007 ◽  
Vol 13 (2) ◽  
pp. 153-188 ◽  
Author(s):  
Akihiro Kanamori

Kurt Gödel (1906–1978) with his work on the constructible universeLestablished the relative consistency of the Axiom of Choice (AC) and the Continuum Hypothesis (CH). More broadly, he ensured the ascendancy of first-order logic as the framework and a matter of method for set theory and secured the cumulative hierarchy view of the universe of sets. Gödel thereby transformed set theory and launched it with structured subject matter and specific methods of proof. In later years Gödel worked on a variety of set theoretic constructions and speculated about how problems might be settled with new axioms. We here chronicle this development from the point of view of the evolution of set theory as a field of mathematics. Much has been written, of course, about Gödel's work in set theory, from textbook expositions to the introductory notes to his collected papers. The present account presents an integrated view of the historical and mathematical development as supported by his recently published lectures and correspondence. Beyond the surface of things we delve deeper into the mathematics. What emerges are the roots and anticipations in work of Russell and Hilbert, and most prominently the sustained motif of truth as formalizable in the “next higher system”. We especially work at bringing out how transforming Gödel's work was for set theory. It is difficult now to see what conceptual and technical distance Gödel had to cover and how dramatic his re-orientation of set theory was.


2020 ◽  
pp. 2150012
Author(s):  
Juliette Kennedy ◽  
Menachem Magidor ◽  
Jouko Väänänen

If we replace first-order logic by second-order logic in the original definition of Gödel’s inner model [Formula: see text], we obtain the inner model of hereditarily ordinal definable (HOD) sets [33]. In this paper, we consider inner models that arise if we replace first-order logic by a logic that has some, but not all, of the strength of second-order logic. Typical examples are the extensions of first-order logic by generalized quantifiers, such as the Magidor–Malitz quantifier [24], the cofinality quantifier [35], or stationary logic [6]. Our first set of results show that both [Formula: see text] and HOD manifest some amount of formalism freeness in the sense that they are not very sensitive to the choice of the underlying logic. Our second set of results shows that the cofinality quantifier gives rise to a new robust inner model between [Formula: see text] and HOD. We show, among other things, that assuming a proper class of Woodin cardinals the regular cardinals [Formula: see text] of [Formula: see text] are weakly compact in the inner model arising from the cofinality quantifier and the theory of that model is (set) forcing absolute and independent of the cofinality in question. We do not know whether this model satisfies the Continuum Hypothesis, assuming large cardinals, but we can show, assuming three Woodin cardinals and a measurable above them, that if the construction is relativized to a real, then on a cone of reals, the Continuum Hypothesis is true in the relativized model.


1971 ◽  
Vol 36 (3) ◽  
pp. 414-432 ◽  
Author(s):  
Peter B. Andrews

In [8] J. A. Robinson introduced a complete refutation procedure called resolution for first order predicate calculus. Resolution is based on ideas in Herbrand's Theorem, and provides a very convenient framework in which to search for a proof of a wff believed to be a theorem. Moreover, it has proved possible to formulate many refinements of resolution which are still complete but are more efficient, at least in many contexts. However, when efficiency is a prime consideration, the restriction to first order logic is unfortunate, since many statements of mathematics (and other disciplines) can be expressed more simply and naturally in higher order logic than in first order logic. Also, the fact that in higher order logic (as in many-sorted first order logic) there is an explicit syntactic distinction between expressions which denote different types of intuitive objects is of great value where matching is involved, since one is automatically prevented from trying to make certain inappropriate matches. (One may contrast this with the situation in which mathematical statements are expressed in the symbolism of axiomatic set theory.).


1985 ◽  
Vol 50 (3) ◽  
pp. 773-780
Author(s):  
Mitchell Spector

AbstractWe initiate the study of model theory in the absence of the Axiom of Choice, using the Axiom of Determinateness as a powerful substitute. We first show that, in this context, is no more powerful than first-order logic. The emphasis then turns to upward Löwenhein-Skolem theorems; ℵ1 is the Hanf number of first-order logic, of , and of a strong fragment of , The main technical innovation is the development of iterated ultrapowers using infinite supports; this requires an application of infinite-exponent partition relations. All our theorems can be proven from hypotheses weaker than AD.


1995 ◽  
Vol 60 (1) ◽  
pp. 209-221 ◽  
Author(s):  
J. L. Bell

A key idea in both Frege's development of arithmetic in the Grundlagen [7] and Zermelo's 1904 proof [10] of the well-ordering theorem is that of a “type reducing” correspondence between second-level and first-level entities. In Frege's construction, the correspondence obtains between concept and number, in Zermelo's (through the axiom of choice), between set and member. In this paper, a formulation is given and a detailed investigation undertaken of a system ℱ of many-sorted first-order logic (first outlined in the Appendix to [6]) in which this notion of type reducing correspondence is accorded a central role and which enables Frege's and Zermelo's constructions to be presented in such a way as to reveal their essential similarity. By adapting Bourbaki's version of Zermelo's proof of the well-ordering theorem, we show that, within ℱ, any correspondence c between second-level entities (here called concepts) and first-level ones (here called objects) induces a well-ordering relation W (c) in a canonical manner. We shall see that, when c is the “Fregean” correspondence between concepts and cardinal numbers, W (c) is (the well-ordering of) the ordinal ω + 1, and when c is a “Zermelian” choice function on concepts, W (c) is a well-ordering of the universal concept embracing all objects.In ℱ an important role is played by the notion of extension of a concept. To each concept X we assume there is assigned an object e(X) in such a way that, for any concepts X, Y satisfying a certain predicate E, we have e (X) = e (Y) iff the same objects fall under X and Y.


2010 ◽  
Vol 16 (1) ◽  
pp. 1-36 ◽  
Author(s):  
Peter Koellner

AbstractIn this paper we investigate strong logics of first and second order that have certain absoluteness properties. We begin with an investigation of first order logic and the strong logics ω-logic and β-logic, isolating two facets of absoluteness, namely, generic invariance and faithfulness. It turns out that absoluteness is relative in the sense that stronger background assumptions secure greater degrees of absoluteness. Our aim is to investigate the hierarchies of strong logics of first and second order that are generically invariant and faithful against the backdrop of the strongest large cardinal hypotheses. We show that there is a close correspondence between the two hierarchies and we characterize the strongest logic in each hierarchy. On the first-order side, this leads to a new presentation of Woodin's Ω-logic. On the second-order side, we compare the strongest logic with full second-order logic and argue that the comparison lends support to Quine's claim that second-order logic is really set theory in sheep's clothing.


Author(s):  
Jonathan Mai

English distinguishes between singular quantifiers like "a donkey" and plural quantifiers like "some donkeys". Pluralists hold that plural quantifiers range in an unusual, irreducibly plural, way over common objects, namely individuals from first-order domains and not over set-like objects. The favoured framework of pluralism is plural first-order logic, PFO, an interpreted first-order language that is capable of expressing plural quantification. Pluralists argue for their position by claiming that the standard formal theory based on PFO is both ontologically neutral and really logic. These properties are supposed to yield many important applications concerning second-order logic and set theory that alternative theories supposedly cannot deliver. I will show that there are serious reasons for rejecting at least the claim of ontological innocence. Doubt about innocence arises on account of the fact that, when properly spelled out, the PFO-semantics for plural quantifiers is committed to set-like objects. The correctness of my worries presupposes the principle that for every plurality there is a coextensive set. Pluralists might reply that this principle leads straight to paradox. However, as I will argue, the true culprit of the paradox is the assumption that every definite condition determines a plurality.


Author(s):  
Gregory H. Moore

The creation of modern logic is one of the most stunning achievements of mathematics and philosophy in the twentieth century. Modern logic – sometimes called logistic, symbolic logic or mathematical logic – makes essential use of artificial symbolic languages. Since Aristotle, logic has been a part of philosophy. Around 1850 the mathematician Boole began the modern development of symbolic logic. During the twentieth century, logic continued in philosophy departments, but it began to be seriously investigated and taught in mathematics departments as well. The most important examples of the latter were, from 1905 on, Hilbert at Göttingen and then, during the 1920s, Church at Princeton. As the twentieth century began, there were several distinct logical traditions. Besides Aristotelian logic, there was an active tradition in algebraic logic initiated by Boole in the UK and continued by C.S. Peirce in the USA and Schröder in Germany. In Italy, Peano began in the Boolean tradition, but soon aimed higher: to express all major mathematical theorems in his symbolic logic. Finally, from 1879 to 1903, Frege consciously deviated from the Boolean tradition by creating a logic strong enough to construct the natural and real numbers. The Boole–Schröder tradition culminated in the work of Löwenheim (1915) and Skolem (1920) on the existence of a countable model for any first-order axiom system having a model. Meanwhile, in 1900, Russell was strongly influenced by Peano’s logical symbolism. Russell used this as the basis for his own logic of relations, which led to his logicism: pure mathematics is a part of logic. But his discovery of Russell’s paradox in 1901 required him to build a new basis for logic. This culminated in his masterwork, Principia Mathematica, written with Whitehead, which offered the theory of types as a solution. Hilbert came to logic from geometry, where models were used to prove consistency and independence results. He brought a strong concern with the axiomatic method and a rejection of the metaphysical goal of determining what numbers ‘really’ are. In his view, any objects that satisfied the axioms for numbers were numbers. He rejected the genetic method, favoured by Frege and Russell, which emphasized constructing numbers rather than giving axioms for them. In his 1917 lectures Hilbert was the first to introduce first-order logic as an explicit subsystem of all of logic (which, for him, was the theory of types) without the infinitely long formulas found in Löwenheim. In 1923 Skolem, directly influenced by Löwenheim, also abandoned those formulas, and argued that first-order logic is all of logic. Influenced by Hilbert and Ackermann (1928), Gödel proved the completeness theorem for first-order logic (1929) as well as incompleteness theorems for arithmetic in first-order and higher-order logics (1931). These results were the true beginning of modern logic.


2013 ◽  
Vol 19 (4) ◽  
pp. 433-472 ◽  
Author(s):  
Georg Schiemer ◽  
Erich H. Reck

AbstractIn historical discussions of twentieth-century logic, it is typically assumed that model theory emerged within the tradition that adopted first-order logic as the standard framework. Work within the type-theoretic tradition, in the style of Principia Mathematica, tends to be downplayed or ignored in this connection. Indeed, the shift from type theory to first-order logic is sometimes seen as involving a radical break that first made possible the rise of modern model theory. While comparing several early attempts to develop the semantics of axiomatic theories in the 1930s, by two proponents of the type-theoretic tradition (Carnap and Tarski) and two proponents of the first-order tradition (Gödel and Hilbert), we argue that, instead, the move from type theory to first-order logic is better understood as a gradual transformation, and further, that the contributions to semantics made in the type-theoretic tradition should be seen as central to the evolution of model theory.


Sign in / Sign up

Export Citation Format

Share Document