The completeness of a predicate-functor logic

1985 ◽  
Vol 50 (4) ◽  
pp. 903-926 ◽  
Author(s):  
John Bacon

Predicate-functor logic, as founded by W. V. Quine ([1960], [1971], [1976], [1981]), is first-order predicate logic without individual variables. Instead, adverbs or predicate functors make explicit the permutations and replications of argument-places familiarly indicated by shifting variables about. For the history of this approach, see Quine [1971, 309ff.]. With the evaporation of variables, individual constants naturally assimilate to singleton predicates or adverbs, leaving no logical subjects whatever of type 0. The orphaned “predicates” may then be taken simply as terms in the sense of traditional logic: class and relational terms on model-theoretic semantics, schematic terms on Quine's denotational or truth-of semantics. Predicate-functor logic thus stands forth as the pre-eminent first-order term logic, as distinct from propositional-quantificational logic. By the same token, it might with some justification qualify as “first-order combinatory logic”, with allowance for some categorization of the sort eschewed in general combinatory logic, the ultimate term logic.Over the years, Quine has put forward various choices of primitive predicate functors for first-order logic with or without the full theory of identity. Moreover, he has provided translations of quantificational into predicate-functor notation and vice versa ([1971, 312f.], [1981, 651]). Such a translation does not of itself establish semantic completeness, however, in the absence of a proof that it preserves deducibility.An axiomatization of predicate-functor logic was first published by Kuhn [1980], using primitives rather like Quine's. As Kuhn noted, “The axioms and rules have been chosen to facilitate the completeness proof” [1980, 153]. While this expedient simplifies the proof, however, it limits the depth of analysis afforded by the axioms and rules. Mindful of this problem, Kuhn ([1981] and [1983]) boils his axiom system down considerably, correcting certain minor slips in the original paper.

2013 ◽  
Vol 78 (3) ◽  
pp. 837-872 ◽  
Author(s):  
Łukasz Czajka

AbstractWe show a model construction for a system of higher-order illative combinatory logic thus establishing its strong consistency. We also use a variant of this construction to provide a complete embedding of first-order intuitionistic predicate logic with second-order propositional quantifiers into the system of Barendregt, Bunder and Dekkers, which gives a partial answer to a question posed by these authors.


Author(s):  
E.I. Gordon

This and forthcoming articles discuss two of the most known nonstandard methods of analysis---the Robinsons infinitesimal analysis and the Boolean valued analysis, the history of their origination, common features, differences, applications and prospects. This article contains a review of infinitesimal analysis and the original method of forcing. The presentation is intended for a reader who is familiar only with the most basic concepts of mathematical logic---the language of first-order predicate logic and its interpretations. It is also desirable to have some idea of the formal proofs and the Zermelo--Fraenkel axiomatics of the set theory. In presenting the infinitesimal analysis, special attention is paid to formalizing the sentences of ordinary mathematics in a first-order language for a superstructure. The presentation of the forcing method is preceded by a brief review of C.Godels result on the compatibility of the Axiom of Choice and the Continuum Hypothesis with Zermelo--Fraenkels axiomatics. The forthcoming article is devoted to Boolean valued models and to the Boolean valued analysis, with particular attention to the history of its origination.


1976 ◽  
Vol 41 (4) ◽  
pp. 705-718 ◽  
Author(s):  
M. H. Löb

Some syntactically simple fragments of intuitionistic logic possess considerable expressive power compared with their classical counterparts.In particular, we consider in this paper intuitionistic second order propositional logic (ISPL) a formalisation of which may be obtained by adding to the intuitionistic propositional calculus quantifiers binding propositional variables together with the usual quantifier rules and the axiom scheme (Ex), where is a formula not containing x.The main purpose of this paper is to show that the classical first order predicate calculus with identity can be (isomorphically) embedded in ISPL.It turns out an immediate consequence of this that the classical first order predicate calculus with identity can also be embedded in the fragment (PLA) of the intuitionistic first order predicate calculus whose only logical symbols are → and (.) (universal quantifier) and the only nonlogical symbol (apart from individual variables and parentheses) a single monadic predicate letter.Another consequence is that the classical first order predicate calculus can be embedded in the theory of Heyting algebras.The undecidability of the formal systems under consideration evidently follows immediately from the present results.We shall indicate how the methods employed may be extended to show also that the intuitionistic first order predicate calculus with identity can be embedded in both ISPL and PLA.For the purpose of the present paper it will be convenient to use the following formalisation (S) of ISPL based on [3], rather than the one given above.


1995 ◽  
Vol 60 (3) ◽  
pp. 861-878 ◽  
Author(s):  
Giovanni Sambin

Pretopologies were introduced in [S], and there shown to give a complete semantics for a propositional sequent calculus BL, here called basic linear logic, as well as for its extensions by structural rules, ex falso quodlibet or double negation. Immediately after Logic Colloquium '88, a conversation with Per Martin-Löf helped me to see how the pretopology semantics should be extended to predicate logic; the result now is a simple and fully constructive completeness proof for first order BL and virtually all its extensions, including the usual, or structured, intuitionistic and classical logic. Such a proof clearly illustrates the fact that stronger set-theoretic principles and classical metalogic are necessary only when completeness is sought with respect to a special class of models, such as the usual two-valued models.To make the paper self-contained, I briefly review in §1 the definition of pretopologies; §2 deals with syntax and §3 with semantics. The completeness proof in §4, though similar in structure, is sensibly simpler than that in [S], and this is why it is given in detail. In §5 it is shown how little is needed to obtain completeness for extensions of BL in the same language. Finally, in §6 connections with proofs with respect to more traditional semantics are briefly investigated, and some open problems are put forward.


2018 ◽  
Vol 12 (1) ◽  
pp. 37-61 ◽  
Author(s):  
WOJCIECH DZIK ◽  
PIOTR WOJTYLAK

AbstractWe introduce unification in first-order logic. In propositional logic, unification was introduced by S. Ghilardi, see Ghilardi (1997, 1999, 2000). He successfully applied it in solving systematically the problem of admissibility of inference rules in intuitionistic and transitive modal propositional logics. Here we focus on superintuitionistic predicate logics and apply unification to some old and new problems: definability of disjunction and existential quantifier, disjunction and existential quantifier under implication, admissible rules, a basis for the passive rules, (almost) structural completeness, etc. For this aim we apply modified specific notions, introduced in propositional logic by Ghilardi, such as projective formulas, projective unifiers, etc.Unification in predicate logic seems to be harder than in the propositional case. Any definition of the key concept of substitution for predicate variables must take care of individual variables. We allow adding new free individual variables by substitutions (contrary to Pogorzelski & Prucnal (1975)). Moreover, since predicate logic is not as close to algebra as propositional logic, direct application of useful algebraic notions of finitely presented algebras, projective algebras, etc., is not possible.


1981 ◽  
Vol 46 (3) ◽  
pp. 649-652 ◽  
Author(s):  
W. V. Quine

Quantification theory, or first-order predicate logic, can be formulated in terms purely of predicate letters and a few predicate functors which attach to predicates to form further predicates. Apart from the predicate letters, which are schematic, there are no variables. On this score the plan is reminiscent of the combinatory logic of Schönfinkel and Curry. Theirs, however, had the whole of higher set theory as its domain; the present scheme stays within the bounds of predicate logic.In 1960 I published an apparatus to this effect, and an improved version in 1971. In both versions I assumed two inversion functors, major and minor; also a cropping functor and the obvious complement functor. The effects of these functors, when applied to an n-place predicate, are as follows:The variables here are explanatory only and no part of the final notation. Ultimately the predicate letters need exponents showing the number of places, but I omit them in these pages.A further functor-to continue now with the 1971 version-was padding:Finally there was a zero-place predicate functor, which is to say simply a constant predicate, namely the predicate ‘I’ of identity, and there was a two-place predicate functor ‘∩’ of intersection. The intersection ‘F ∩ G’ received a generalized interpretation, allowing ‘F’ and ‘G’ to be predicates with unlike numbers of places. However, Steven T. Kuhn has lately shown me that the generalization is unnecessary and reducible to the homogeneous case.


1998 ◽  
Vol 63 (3) ◽  
pp. 869-890 ◽  
Author(s):  
Wil Dekkers ◽  
Martin Bunder ◽  
Henk Barendregt

AbstractIllative combinatory logic consists of the theory of combinators or lambda calculus extended by extra constants (and corresponding axioms and rules) intended to capture inference. In a preceding paper, [2], we considered 4 systems of illative combinatory logic that are sound for first order intuitionistic propositional and predicate logic. The interpretation from ordinary logic into the illative systems can be done in two ways: following the propositions-as-types paradigm, in which derivations become combinators, or in a more direct way, in which derivations are not translated. Both translations are closely related in a canonical way. In the cited paper we proved completeness of the two direct translations. In the present paper we prove that also the two indirect translations are complete. These proofs are direct whereas in another version, [3], we proved completeness by showing that the two corresponding illative systems are conservative over the two systems for the direct translations. Moreover we shall prove that one of the systems is also complete for predicate calculus with higher type functions.


Disputatio ◽  
2002 ◽  
Vol 1 (11) ◽  
pp. 37-42 ◽  
Author(s):  
Gustavo Fernández Díez

Abstract In this paper I dispute the current view that intuitionistic logic is the common basis for the three main trends of constructivism in the philosophy of mathematics: intuitionism, Russian constructivism and Bishop’s constructivism. The point is that the so-called ‘Markov’s principle’, which is accepted by Russian constructivists and rejected by the other two, is expressible in intuitionistic first-order logic, and so it appears to have the status of a logical principle. The result of appending this principle to a complete intuitionistic axiom system for first-order predicate logic constitutes a new logic, which could well be called ‘Markov’s logic’, and which should be regarded as the true logical system underlying Russian constructivism.


2015 ◽  
Vol 21 (2) ◽  
pp. 9-14
Author(s):  
В. И. Шалак

In this article we prove a theorem on the definitional embeddability of the combinatory logic into the first-order predicate calculus without equality. Since all efficiently computable functions can be represented in the combinatory logic, it immediately follows that they can be represented in the first-order classical predicate logic. So far mathematicians studied the computability theory as some applied theory. From our theorem it follows that the notion of computability is purely logical. This result will be of interest not only for logicians and mathematicians but also for philosophers who study foundations of logic and its relation to mathematics.


1937 ◽  
Vol 2 (1) ◽  
pp. 65-77 ◽  
Author(s):  
Paul Bernays

Introduction. The system of axioms for set theory to be exhibited in this paper is a modification of the axiom system due to von Neumann. In particular it adopts the principal idea of von Neumann, that the elimination of the undefined notion of a property (“definite Eigenschaft”), which occurs in the original axiom system of Zermelo, can be accomplished in such a way as to make the resulting axiom system elementary, in the sense of being formalizable in the logical calculus of first order, which contains no other bound variables than individual variables and no accessory rule of inference (as, for instance, a scheme of complete induction).The purpose of modifying the von Neumann system is to remain nearer to the structure of the original Zermelo system and to utilize at the same time some of the set-theoretic concepts of the Schröder logic and of Principia mathematica which have become familiar to logicians. As will be seen, a considerable simplification results from this arrangement.The theory is not set up as a pure formalism, but rather in the usual manner of elementary axiom theory, where we have to deal with propositions which are understood to have a meaning, and where the reference to the domain of facts to be axiomatized is suggested by the names for the kinds of individuals and for the fundamental predicates.On the other hand, from the formulation of the axioms and the methods used in making inferences from them, it will be obvious that the theory can be formalized by means of the logical calculus of first order (“Prädikatenkalkul” or “engere Funktionenkalkül”) with the addition of the formalism of equality and the ι-symbol for “descriptions” (in the sense of Whitehead and Russell).


Sign in / Sign up

Export Citation Format

Share Document