The impact of foot angle on lower limb muscles activity during the back squat and counter movement jump

Author(s):  
Francesco ROLLI ◽  
Jacopo A. VITALE ◽  
Lorenzo PUGLIESE ◽  
Gennaro BOCCIA ◽  
Antonio LA TORRE ◽  
...  
Author(s):  
Giuseppe Coratella ◽  
Gianpaolo Tornatore ◽  
Stefano Longo ◽  
Marta Borrelli ◽  
Christian Doria ◽  
...  

2014 ◽  
Vol 20 (6) ◽  
pp. 675-691 ◽  
Author(s):  
Blair Calancie ◽  
Miriam L. Donohue ◽  
Colin B. Harris ◽  
Gregory W. Canute ◽  
Amit Singla ◽  
...  

Object Reports of the accuracy of existing neuromonitoring methods for detecting or preventing medial malpositioning of thoracic pedicle screws have varied widely in their claimed effectiveness. The object of this study was to develop, test, and validate a novel neuromonitoring method for preventing medial malpositioning of pedicle screws in the thoracic spine during surgery. Methods This is a prospective, blinded and randomized study using a novel combination of input (4-pulse stimulus trains delivered within the pedicle track) and output (evoked electromyography from leg muscles) to detect pedicle track trajectories that—once implanted with a screw—would cause that screw to breach the pedicle's medial wall and encroach upon the spinal canal. For comparison, the authors also used screw stimulation as an input and evoked electromyogram from intercostal and abdominal muscles as output measures. Intraoperative electrophysiological findings were compared with postoperative CT scans by multiple reviewers blinded to patient identity or intraoperative findings. Results Data were collected from 71 patients, in whom 802 screws were implanted between the T-1 and L-1 vertebral levels. A total of 32 screws ended up with screw threads encroaching on the spinal canal by at least 2 mm. Pulse-train stimulation within the pedicle track using a ball-tipped probe and electromyography from lower limb muscles correctly predicted all 32 (100%) of these medially malpositioned screws. The combination of pedicle track stimulation and electromyogram response from leg muscles proved to be far more effective in predicting these medially malpositioned screws than was direct screw stimulation and any of the target muscles (intercostal, abdominal, or lower limb muscles) we monitored. Based on receiver operating characteristic analysis, the combination of 10-mA (lower alarm) and 15-mA stimulation intensities proved most effective for detection of pedicle tracks that ultimately gave rise to medially malpositioned screws. Additional results pertaining to the impact of feedback of these test results on surgical decision making are provided in the companion report. Conclusions This novel neuromonitoring approach accurately predicts medially malpositioned thoracic screws. The approach could be readily implemented within any surgical program that is already using contemporary neuromonitoring methods that include transcranial stimulation for monitoring motor evoked potentials.


2004 ◽  
Vol 29 (6) ◽  
pp. 834-842 ◽  
Author(s):  
Gabrielle Todd ◽  
Robert B. Gorman ◽  
Simon C. Gandevia

QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Rasha M Ibrahim ◽  
Haitham M Hamdy ◽  
Amr A Mohammed ◽  
Ahmed M Elsadek ◽  
Ahmed M Bassiouny ◽  
...  

Abstract Background Limb-girdle muscular dystrophies (LGMDs) are a clinically and genetically heterogeneous group of disorders characterized by progressive muscle weakness and degenerative muscle changes. Studies have shown that ultrasound can be useful both for diagnosis and follow-up of LGMDs patients. Objectives This study aims to measure the sensitivity and the specificity of muscle ultrasound in assessment of suspected limb girdle muscular dystrophy patients. Subjects and Methods This cross-sectional descriptive study was conducted on Fifty-five patients with suspected LGMD from neuromuscular unit, myology clinic, Ain Shams University hospitals and eight healthy subjects. Age was above 2 years. Both sexes were included in the study. They underwent real-time B-mode ultrasonography performed with using Logiq p9 General Electric ultrasound machine and General Electric 7-11.5 MHZ linear array ultrasound probe. All ultrasound images have been obtained and scored by a single examiner and muscle echo intensity was visually graded semiquantitative according to Heckmatt's scale. The examiner was blinded to the muscle biopsy results and clinical evaluations. Results Statistical analysis revealed that the diagnostic performance of muscle US (Heckmatt’s score) in LGMD is most sensitive when calculated in all examined upper limb and lower limb muscles, followed by lower limb muscles alone. US of upper limb was found to be the least sensitive. Conclusions Muscle ultrasound is a practical and reproducible and valid tool that can be used in assessment of suspected LGMD patients.


Sign in / Sign up

Export Citation Format

Share Document