scholarly journals Assessment of physical habitat modification in the Bílina River Basin

Limnetica ◽  
2011 ◽  
Vol 30 (2) ◽  
pp. 293-306
Author(s):  
Milada Matoušková ◽  
Martin Dvořák
2010 ◽  
Vol 55 (No. 3) ◽  
pp. 123-136 ◽  
Author(s):  
P. Jurajda ◽  
Z. Adámek ◽  
M. Janáč ◽  
Z. Valová

The aim of this study was to provide the first account of fish and macroinvertebrate communities in a heavily degraded river basin in the Czech Republic. Fish and macrozoobenthos were surveyed at 18 sites in the Bílina River and 11 sites in tributary streams during June–July 2007. Fish were sampled by electrofishing and macrozoobenthos were collected by kick-sampling using a sweep net. The composition of macroinvertebrate assemblages in headwater and reference sites in the upper Bílina River indicated clean water with saprobic index (SI) 1.31–1.43 followed by a transitional stretch downstream the Kyjická reservoir (SI 2.05–2.32) and dramatic decline of water quality to SI 3.18 in the river stretch downstream of industrial and municipal pollution at Litvínov-Záluží. Despite several minor pollution sources on the subsequent downstream river stretch until its mouth into the Elbe River, the water quality indicators fluctuated in the range of lower betamesosaprobity (SI 2.06–2.58). Species richness and biodiversity indices followed a similar pattern as river saprobity. Twenty-three fish species were documented in the Bílina River basin. Chub (<I>Leuciscus cephalus</I>), gudgeon (<I>Gobio gobio</I>) and roach (<I>Rutilus rutilus</I>) were the most frequent species at the Bílina sites. Chub was the most numerous fish in the tributaries. Fish species richness in the longitudinal profile did not increase downstream in the Bílina mainstem, most likely because the presence of reservoirs and water pollution interrupted the river continuum pattern. Qualitative data on fish assemblages corresponded to the course of environmental stress. A sustainable fish community was documented only in the lowermost site in Ústí nad&nbsp;Labem near the confluence with the Elbe River. The Bílina River tributaries constitute potential refuges for fish in this basin.


1987 ◽  
Vol 19 (9) ◽  
pp. 19-29 ◽  
Author(s):  
Edwin E. Herricks ◽  
Maria I. Braga

Comprehensive river basin management mast move beyond narrowly focused programs dealing with water quantity or water quality. A more comprehensive approach to river basin management recognizes that both flow quantity and water quality can be summarized as habitat measures. A number of well developed physical habitat analysis and prediction procedures are presently available. Several computerized systems available from the U.S.Fish and Wildlife Service (Habitat Suitability Index - HSI and PHysical HABitat SIMulation - PHABSIM) provide macrohabitat definition. We have developed a water quality based habitat component which operates effectively for general analysis. With an emphasis on site specific management in the United States, the macrohabitat definition procedures may not meet all river basin management and planning requirements. This paper reviews the results of research which characterizes microhabitat in streams and rivers and provides a valuable extension to basin management procedures.


Diversity ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 17 ◽  
Author(s):  
Jorge Gutiérrez ◽  
María Bagur ◽  
M. Palomo

Mussels and macroalgae have long been recognized as physical ecosystem engineers that modulate abiotic conditions and resources and affect the composition of rocky shore assemblages. Their spatial distributions in the intertidal zone frequently overlap, as many algal species thrive as epibionts on mussel beds. Nonetheless, their potential for combined engineering effects has not been addressed to date. Here we illustrate that Porphyra sp.—a desiccation-resistant macroalga that develops mostly epiphytically onto mussel beds—affects temperature, desiccation levels, and mobile interstitial invertebrates in mussel beds. Specifically, we observed that Porphyra cover (a) reduced temperature at the surface of the mussel bed but not at their base, (b) reduced desiccation both at the surface and base of the mussel bed and, (c) increased the densities of an abundant interstitial species—the amphipod Hyale grandicornis—in several study sites/dates. Additionally, we found that the positive responses of these grazing amphipods to Porphyra were driven by physical habitat modification (engineering) rather than food availability. This suggests that co-engineering by Porphyra and mussels generates abiotic states and focal species responses that would not be predictable from their individual effects. We expect that increased appreciation of co-engineering aids our understanding of complex ecological dynamics.


2015 ◽  
Vol 17 (1) ◽  
pp. 264 ◽  
Author(s):  
E. J. OLAYA-MARIN ◽  
F. MARTÍNEZ-CAPEL ◽  
R. GARCÍA-BARTUAL ◽  
P. VEZZA

Luciobarbus guiraonis (Eastern Iberian barbel) is an endemic fish species restricted to Spain, mainly distributed in the Júcar River Basin District. Its study is important because there is little knowledge about its biology and ecology. To improve the knowledge about the species distribution and habitat requirements, nonlinear modelling was carried out to predict the presence/absence and density of the Eastern Iberian barbel, based on 155 sampling sites distributed throughout the Júcar River Basin District (Eastern Iberian Peninsula). We used multilayer feed-forward artificial neural networks (ANN) to represent nonlinear relationships between L. guiraonis descriptors and variables regarding the physical habitat and biological components (macroinvertebrates, fish, riparian forest). The gradient descent algorithm was implemented to find the optimal model parameters; the importance of the ANN’s input variables was determined by the partial derivatives method. The predictive power of the model was evaluated with the Cohen’s kappa (k), the correctly classified instances (CCI), and the area under the curve (AUC) of the receiver operator characteristic (ROC) plots. The best model predicted presence/absence with a high performance (k= 0.66, CCI= 87% and AUC= 0.85); the prediction of density was moderate (CCI = 62%, AUC=0.71 and k= 0.43). The fundamental variables describing the presence/absence were; solar radiation (the highest contribution was observed between 2000 and 4200 WH/m2), drainage area (with the strongest influence between 3000 and 5.000 km2), and the proportion of exotic fish species (with relevant contribution between 50 and 100%). In the density model, the most important variables were the coefficient of variation of mean annual flows (relative importance of 50.5%) and the proportion of exotic fish species (24.4%). The models provide important information about the relation of L. guiraonis with biotic and abiotic variables, this new knowledge can help develop future studies and management plans for the conservation of this species in the Júcar River Basin District and, potentially, for the conservation of other endemic fish species of Barbus and Luciobarbus in Mediterranean rivers.


2012 ◽  
Vol 3 (2) ◽  
pp. 319-331 ◽  
Author(s):  
Jo Ellen Hinck ◽  
Stephen E. McMurray ◽  
Andrew D. Roberts ◽  
M. Christopher Barnhart ◽  
Christopher G. Ingersoll ◽  
...  

Abstract The Meramec River basin in eastcentral Missouri has one of the most diverse unionoid mussel faunas in the central United States with 40 species identified. Data were analyzed from historical surveys to test whether diversity and abundance of mussels in the Meramec River basin Big, Bourbeuse, and Meramec rivers, representing 400 river miles decreased between 1978 and 1997. We found that over 20y, species richness and diversity decreased significantly in the Bourbeuse and Meramec rivers but not in the Big River. Most species were found at fewer sites and in lower numbers in 1997 than in 1978. Federally endangered species and Missouri Species of Conservation Concern with the most severe temporal declines were Alasmidonta viridis, Arcidens confragosus, Elliptio crassidens, Epioblasma triquetra, Fusconaia ebena, Lampsilis abrupta, Lampsilis brittsi, and Simpsonaias ambigua. Averaged across all species, mussels were generally being extirpated from historical sampling sites more rapidly than colonization was occurring. An exception was one reach of the Meramec River between river miles 28.4 and 59.5, where mussel abundance and diversity were greater than in other reaches and where colonization of Margaritiferidae, Lampsilini, and Quadrulini exceeded extirpation. The exact reasons mussel diversity and abundance have remained robust in this 30mile reach is uncertain, but the reach is associated with increased gradients, few long pools, and vertical rock faces, all of which are preferable for mussels. Complete loss of mussel communities at eight sites 16 with relatively diverse historical assemblages was attributed to physical habitat changes including bank erosion, unstable substrate, and sedimentation. Mussel conservation efforts, including restoring and protecting riparian habitats, limiting the effects of instream sand and gravel mining, monitoring and controlling invasive species, and protecting water quality, may be warranted in the Meramec River basin.


2010 ◽  
Vol 70 (4 suppl) ◽  
pp. 1195-1205 ◽  
Author(s):  
PF. Costa ◽  
UH Schulz

The basin of the Sinos River, located in the northeastern part of Rio Grande do Sul state, Brazil, has been highly impacted by industrial and urban activities. Water quality is low because of domestic and industrial sewage discharges. Most of the tributaries have suffered drastic structural interventions like canalisations and the removal of riparian vegetation. The aims of this study were to: 1) assess the diversity of fish at 34 sampling sites in twenty-four tributaries of the Sinos River basin; 2) quantify impact level by the Shannon-Wiener diversity index and an adapted Index of Biotic Integrity (IBI); and 3) check the interference of environmental impacts, formerly quantified in a Stream Corridor Assessment Survey (SCAS), on the fish assembly and 4) compare the relationship between the IBI with stream order. Fish sampling was performed by electric fishing in the period from April 2004 to August 2006. A total of 4,869 individuals were sampled, representing 61 species, 14 families and six orders. Significant relationships of the Shannon-Wiener index and IBI with SCAS scores and stream orders were found. Of all impacts that make up the SCAS score, only channel modifications were significantly correlated with IBI. These results indicate that the adaptation of the IBI was effective and performed better than the Shannon-Wiener diversity index when related directly to specific impact categories. The application of the IBI with the SCAS and the other variables was efficient in the tributaries of the Sinos River basin because it showed the biotic degradation in accordance with changes in physical habitat.


2006 ◽  
Vol 86 (2) ◽  
pp. 53-61 ◽  
Author(s):  
Ana Milanovic ◽  
Marko Urosev ◽  
Dragana Milijasevic

River Habitat Survey (RHS) is terrain method developed in UK in 1994. for determination of physical character of rivers and river basin. This method is applied for the first time in Golijska Moravica river basin. Two indices which broadly describe the diversity of river habitat and landscape features (Habitat Quality Assessment (HQA)) and extent and severity of artificial modification to the channel (Habitat Modification Class (HMC)) has been developed for reporting purposes. These are based on simple scoring systems which have been agreed by technical experts.


Sign in / Sign up

Export Citation Format

Share Document